
UNIVERSITY OF OSLO
Department of Informatics

Power efficient ∆Σ
bitstream
encoder/decoder

Master thesis

Daniel Mo

August 3, 2009

Abstract

The thesis presents design and implementation of components for recoding of signals

between binary PCM and a bitstream representation. The bitstream representation en-

ables real time signal processing using a power efficient algorithm for time-domain cross-

correlation. The greatest savings are made when the system is restricted to a low Over-

sampling Ratio (OSR).

A fully digital Delta Sigma encoder is presented. The low OSR is the largest limiting

factor in the system. Both simulations and measured results of the implemented modulator

shows an achievable Signal to Noise Ratio (SNR) in the range 30− 35dB.

Digital filters are designed for sampling rate conversion between the Nyquist rate and the

oversampled rate. Considerations and trade-offs specific to filter design in a Delta Sigma

context are given. Several measures are taken to improve power efficiency of the circuits,

while evaluating the impact on signal quality after conversion.

Both filters and the Delta Sigma encoder are implemented in 90nm CMOS on a single

1mm2 chip, together with the cross-correlator. Circuit performance is evaluated for all

circuits by theoretical considerations, simulations and chip measurements.

1

2

Contents

1 Introduction 11

1.1 Ubiquitous computing . 11

1.2 Power consumption . 12

2 System overview 15

2.1 Signal recoding . 15

2.2 Bitstream cross-correlation . 16

2.2.1 Module interface . 18

2.2.2 Convolution . 18

2.3 System evaluation . 18

3 Delta-Sigma modulation 21

3.1 Digital Encoding . 21

3.1.1 Coding forms . 22

3.1.2 Quantization . 22

3.1.3 Oversampling . 24

3.1.4 Noise shaping . 24

3.1.5 Higher order modulators . 26

3.2 Coding Efficiency . 28

3.2.1 Signal quality . 29

3.2.2 Optimized NTF . 31

3.2.3 True serial representation . 32

3.2.4 Robust coding . 32

3.3 Delta Sigma Encoder . 32

3.3.1 Digital-to-digital . 32

3.3.2 Requirements . 34

3.3.3 Design choices . 35

3.4 Simulations . 37

3.4.1 Periodogram . 39

3.5 Bitstream signal processing . 40

3.5.1 Addition . 40

3.5.2 Multiplication . 41

3

Contents

4 Interpolation 43

4.1 Interpolation filter . 43

4.1.1 Ideal interpolation . 46

4.2 Cascaded interpolation filter . 49

4.2.1 Requirements in a DSM system 49

4.2.2 Multi stage filtering . 51

4.3 Step 1: Finite Impulse Response (FIR) filter 52

4.3.1 Half-band filter . 52

4.3.2 Structural improvements . 53

4.4 Step 2: Cascaded Integrator Comb (CIC) filters 54

4.4.1 Filter parameters . 55

4.4.2 Bit growth in CIC filters . 58

4.5 Simulations . 58

4.5.1 FIR Half-band filter . 60

4.5.2 CIC Interpolation filter . 60

4.5.3 Cascaded interpolation filter . 62

4.5.4 Interpolation and DSM . 62

5 Decimation 65

5.1 Ideal decimation . 65

5.1.1 Aliasing . 66

5.2 Decimation in a Delta Sigma system . 66

5.2.1 Decimation of cross-correlated signal 67

5.3 Simulations . 68

6 Circuit implementation 71

6.1 Basic blocks . 71

6.1.1 Adders . 72

6.1.2 Registers . 73

6.1.3 Upsampling . 75

6.1.4 Downsampling . 76

6.1.5 Gain steps . 76

6.1.6 Serial arithmetic . 78

6.2 Layout using SKILL . 80

6.3 Control and interface . 81

6.3.1 Clock division . 82

6.3.2 Serial Peripheral Interface Bus (SPI) 82

6.3.3 Interconnection and routing . 84

7 Chip measurements 85

7.1 Printed Circuit Board (PCB) . 85

4

Contents

7.2 Measurement setup . 87

7.3 Results . 88

7.3.1 DSM . 88

7.3.2 FIR filter . 88

7.3.3 Faulty CIC filter design . 90

7.4 Power simulations . 94

8 Conclusion 97

8.1 Future work . 98

A Paper 99

B SKILL code excerpt 105

C SPIserialize 111

D Micro-controller firmware 115

E Python host script 119

5

Contents

6

Acknowledgments

I would like to thank my supervisor Tor Sverre Lande for accepting me as his student and

for motivation and guidance throughout these two years. Helpful discussions and valuable

feedback have improved the results of the project.

Thanks to my co-supervisor Håkon A. Hjortland. His attention to LATEXdetails have

helped in making this text look even more beautiful than it otherwise would.

Thanks also to Olav, Kristian, Bård, Øyvind, Dag, Håvard and the others who spent time

in the lab these years. Interesting technical discussions as well as lunch-time conversations

have kept spirits up.

One final ”thank you” to #angry angakoks and svada-core for allowing me to maintain

a refreshing social life during periods of making my home in the lab.

7

Contents

8

Acronyms

ADC Analog-to-Digital Converter

AD Analog/Digital

API Application Programming Interface

CIC Cascaded Integrator Comb

CMOS Complementary Metal Oxide Semiconductor

CSD Canonical Signed Digit

DAC Digital-to-Analog Converter

DAQ Data Acquisition

DA Digital/Analog

DSD Direct Stream Digital

DSM Delta Sigma Modulator

DSP Digital Signal Processing

ENOB Effective Number of Bits

FFT Fast Fourier Transform

FIR Finite Impulse Response

FOM Figure of Merit

GTL Gunning Transceiver Logic

IIR Infinite Impulse Response

ITRS International Technology Roadmap for Semiconductors

MASH Multi-stAge noise SHaping

MCU Micro-controller Unit

9

Contents

MUX Multiplexer

NTF Noise Transfer Function

OSR Oversampling Ratio

PCB Printed Circuit Board

PCM Pulse Code Modulation

PSD Power Density Spectrum

RF Radio Frequency

SACD Super Audio CD

SNR Signal to Noise Ratio

SPI Serial Peripheral Interface Bus

SQNR Signal to Quantization Noise Ratio

STF Signal Transfer Function

TQFP Thin Quad Flat Pack

TTL Transistor-Transistor Logic

USART Universal Synchronous/Asynchronous Receiver/Transmitter

USB Universal Serial Bus

WSN Wireless Sensor Network

10

1 Introduction

1.1 Ubiquitous computing

One of the major trends in modern microelectronics is the increase in development of

devices specialized for its application. The evolution in electronics has moved from large

and high-performance mainframe machines with multiple users, through personal computers

where most people have access to at least one multi-purpose machine. Computing power

continues to increase while silicon feature sizes continues to decrease. This enables smaller

computers to be integrated into our surroundings, performing simple tasks that simplify

our lives. The ideal for such autonomous devices is to blend in with the environment and

work without requiring any awareness from a user. This idea has been characterized as a

third wave of computing, or ubiquitous computing [35].

These devices have other demands than the traditional computing systems. Traditional

applications requires a high performance while ubiquitous applications emphasizes very low

power and size. If small autonomous devices are to exist in large numbers, each can not

require frequent maintenance such as change of batteries. Size is also an important matter.

If devices are to be a natural part of the users environment, its physical size can not be

bulky or heavy. The cell phone is one example. It would not likely be part of our everyday

life if it never shrunk beneath the size of a small suitcase. Even smaller devices are also

becoming available. Computer chips worn on or inside the body would not be possible if

not for a small size and very low power requirements. Such applications may not include a

large battery or consume power in the same range as a personal computer. This leads to

a change of emphasis in the electronic solution. New application fields are opened up and

new difficulties have to be met.

Wireless Sensor Network (WSN)

One such field where there has been a significant research activity lately is in Wireless Sensor

Networks (WSNs). A WSN consists of a number of small devices or nodes performing

some sensor task. These are intended to work independent of each other and without

outside management. Communication of data is done by radio transmission, but instead of

communicating with a common centralized point, the nodes work as relays. This reduces

the required transmitter range to the distance between nodes in the network. Power is

saved by limiting the range of the transmitters, which allows smaller batteries or longer

battery life of the devices. The application areas for small, radio operated devices are

11

1 Introduction

numerous: From surveillance in industry to energy savings in buildings. A WSN has even

been used to optimize ice skating conditions by embedding a network of temperature sensor

nodes within the ice [2].

Sensing devices often perform very limited tasks. Real world processes are commonly

slowly changing and does not always require high speed operation. Radio transmission on

the other hand requires high frequencies, and is left as the most power hungry part of

the unit. In other words, the largest power savings come from reducing the range of the

transmitter, but also from reducing the amount of data being transmitted. One way of

doing this is by performing basic data processing tasks before transmission, instead of on

a central device.

Common to many such devices is that they require use of mixed-mode signals in inter-

facing with the surroundings. Sensing of an environmental process requires some form of

sensor and an Analog-to-Digital Converter (ADC), while control of a process requires a

Digital-to-Analog Converter (DAC). A highly successful and power efficient method for

both AD and DA conversion is Delta Sigma modulation. Converters using this technique

are widespread and dominant among high resolution converters for frequencies below a few

MHz.

1.2 Power consumption

The International Technology Roadmap for Semiconductors (ITRS) identifies power con-

sumption as one of the major challenges of the industry in both the short term and the long

term. One of the reasons for this is that improvements of effective heat removal seems

to level, while the density of transistors per chip area continues to increase in the foresee-

able future [14]. In addition comes an ever increasing demand for portable and low-power

devices operated by battery. Battery life puts a limit on the practical power consumption

of portable consumer electronics. Reducing power consumption is important both for high

performance systems and for lower performance portable applications.

Dynamic power

Two main factors make up the total power dissipation of an integrated circuit; supply

voltage and total current through transistors. Total current is a function of the supply

voltage V , switched capacitance and frequency of operation f . The switched capacitance

is given as the fraction of active gates A times the total capacitance C in the system. This

leads to an equation for dynamic power consumption in a digital circuit [16].

Pdynamic = ACf V 2

For a digital Complementary Metal Oxide Semiconductor (CMOS) circuit, supply voltage

is usually limited by the processing technology and is typically the same in a given system.

12

1.2 Power consumption

Total capacitance in a digital circuit may be assumed proportional to the number of tran-

sistors N, as long as the circuit is built of mostly minimum sized transistors. This leads

to a simplification of the above power relationship, suited for comparison of circuits within

the same processing technology and supply voltage.

Pdynamic ∝ N × fclk

Activity level of the transistors requires detailed knowledge of the circuit and may be hard

to estimate in a complex system. Fortunately, this may be further simplified by assuming

the activity level to be approximately proportional to the clock rate of a system. This holds

for synchronous circuits where levels are changing only as a result of the clock signal.

Activity level is often signal-dependent. Consider for example the addition of two digital

signals. It is clear that the addition of sequences of zeros requires a very low activity level

in the adders, regardless of the clock rate, whereas addition of highly active signals requires

a larger number of state changes in the adders. From this, it can also be argued that the

approximation is well suited for noise-shaping systems, in that the activity level of the signal

is always high, even for a static input. The activity thus has a closer dependence on the

clock rate than on the input signal.

From the above equations it is clear that the high clock rate of an oversampled system

contributes to the power dissipation, and should be kept as low as possible. A doubling of

the clock rate will only allow for half as many transistors without increasing dynamic power

dissipation.

Static power

As processes move towards a finer pitch, an increasing portion of the total currents are due

to static leakage currents in the transistors. These currents come from two sources: The

first is from sub-threshold currents through channels when transistors are in the off-state,

or weak inversion. Threshold currents increase with a reduction in threshold voltage. The

second source is gate oxide leakage; currents leak through the very thin gate insulation.

This current is related to the thickness of the gate oxide layer. The layer is reduced

proportionally with transistor minimum sizes to avoid short channel effects [16]. Both

current sources are technology dependent, and proportional to the number of transistors

and supply voltage. They are also independent of activity in the circuit. A modification of

the above power equation must be made to take this into account.

P = Pdynamic + Pstatic

where

Pdynamic ∝ N × fclk
Pstatic ∝ N

13

1 Introduction

For larger feature processes, static power dissipation is usually negligible in comparison

with the dynamic power. With advances in manufacturing technology, static power is no

longer negligible and makes up an ever increasing portion of the total power dissipated in

a circuit. This is especially true where dynamic power is low due to a low clock rate or

activity level.

This increases the effect of circuit complexity on total power dissipation. For modern

processes, one may no longer add complexity without adding to the power dissipation. Tra-

ditional solutions that reduce power dissipation while increasing the number of transistors

becomes less effective. This motivates a search for solutions on other levels, to lower the

total power consumption of a system.

Power reduction

Several approaches to power reduction have been successfully explored. It is practical to

consider such measures on several levels and it is possible to divide these into at least four

levels [7]:

• Technology

• Circuit

• Architecture

• Algorithm

The Technology level includes reductions in power due to overall supply voltage reduction

and transistor minimum sizes. The Circuit level includes low-level measures such as choice

of topology, choice of logic family and gate sizing. Reductions on this level are closely con-

nected to the transistors’ analog properties. Architectural improvements include pipe-lining

and parallelism to increase throughput and allow for a lower-voltage design. Implementa-

tion of a function using an effective algorithm is a good way of decreasing total power

dissipation by decreasing the total number of required operations. A good design for low

power consumption may include measures on several or all of these levels.

Many applications require real time computations, especially in the fields typical for

ubiquitous computing. Once a circuit is able to achieve a real time computation, there

is nothing further to be gained from increasing the speed anywhere in the circuit. This

is a degree of freedom that instead may be used to reduce power consumption. A good

example of this can be seen by comparing the carry select adder topology with the ripple

carry topology. The carry select is a faster topology, but requires a larger amount of

internal state changes than the simpler ripple carry topology. This results in a higher power

dissipation [7]. For applications where optimizing for speed is not important, the ripple carry

adder is the better one because of its lower activity and thus lower power consumption per

operation.

14

2 System overview

The system presented in this thesis is a collaborative project between Olav E. Liseth and the

author. A single chip is produced in a 90nm CMOS process implementing power efficient

cross-correlation by recoding a digital signal as a bitstream. The cross-correlator is the

work of Liseth and is presented in [20], while signal recoding and interfacing is done as part

of this thesis.

2.1 Signal recoding

Signal recoding is necessary in two steps: An incoming digital binary coded signal is recoded

into its bitstream representation before processing by the cross correlator. The output of

the correlator needs conversion back to the original form, either for simple readout using a

computer or further processing steps. Figure 2.1 shows how the encoding and decoding is

done.

The system is divided into four main parts, and these can be considered somewhat

independent of each other.

Digital-to-digital DSM Converts oversampled Pulse Code Modulation (PCM) to a one-

bit Delta Sigma bitstream. Chapter 3.

Interpolation filter Increases the sampling rate of the incoming Nyquist-rate signal. Chap-

ter 4.

Decimation filter Converts bitstream back to Nyquist rate PCM. Chapter 5.

Signal processing Performs an efficient calculation on the bitstream. Discussed briefly in

this chapter.

PCM

DSM
Interpolation
filter

PCM 1 Bitstream
operation

Decimation
filter

PCM1

Figure 2.1: Intermediate bitstream representation allows for efficient signal processing.

15

2 System overview

Recoding enables use of signal processing operations on the bitstream representation. Some

operations may be implemented more efficiently for bitstream code than binary code. Al-

though the recoding of a digital input requires additional hardware and possibly losses to

signal quality, this may be justified if it enables larger savings in the signal processing step.

The PCM representation is both easier to interpret for humans and better suited for pre-

sentation or further processing on a computer than the raw output from the bitstream

signal processor.

As Delta Sigma modulation is a technique originating from Analog/Digital (AD) and

Digital/Analog (DA) conversion, high quality converters are available for a variety of uses.

Hence the idea of signal processing directly on the bitstream representation is even more

attractive for real world applications involving AD/DA conversion. Bitstream signal pro-

cessing directly on the output of a single bit ADC removes the need for filtering prior

to the processing step and reduces the overall hardware needs. Similarly for DA conver-

sion; converting the single-bit (or multi-bit) processed signal directly to analog removes

the need for the interpolating filter used as part of Nyquist rate to analog Delta Sigma

Modulator (DSM) DACs today.

The cross-correlator is one example of a system utilizing signal processing directly in

the oversampled domain. Another example of using Delta Sigma encoding as a means of

enhancing a system is found in ultrasound research. A beam-former used for ultrasound

imaging depends on adjustable delays with a good time-resolution. Such delays are simple

to implement in an oversampled system where time steps are inherently small [26].

2.2 Bitstream cross-correlation

The implemented signal processing block is based on power efficient cross correlation as

presented by Lande et al. [18]. Cross correlation is a useful operation in signal processing,

but computationally very expensive. The function for cross correlation over a window of

length N is

y [n] = f [n] ? g[n] =

N∑
k=0

f [k]g[k + n]

The five-pointed star ? is the discrete cross-correlation operator. Each output sample

of the cross-correlation consists of N multiplications between input samples accumulated

as a sum. This requires either a large number of hardware-expensive multipliers, or few

multipliers operating at an increased rate.

Savings in power are done by operating on bitstreams rather than on binary coded PCM

signals. By recoding both operands to their bitstream representation, computations are

simplified. Multiplication of single bit signals is done using simple XOR logic gates instead

of multiplier circuits. The lower area cost enables operation in parallel. Summation of

the multiplied products is done asynchronously in a sorting register using the bubble sort

16

2.2 Bitstream cross-correlation

4 6 8 10 12 14 16
0

5

10

15

20

25

30

35

Number of bits in samples

F
O

M
M

 /
F

O
M

B

OSR=8

OSR=16

OSR=32

Figure 2.2: Estimated relative improvements from bitstream cross-correlation [18].

algorithm. Power savings of this method are estimated based on a comparison between

the bitstream cross-correlator and a traditional multiplexed multiply-and-accumulate im-

plementation. A Figure of Merit (FOM) is calculated for each approach using a power

estimate similar to the one presented in section 1.2.

FOM = Transistor count× Clock rate

For the multiplier based architecture, the FOMM is a function of correlation length and

input word size. For the bitstream implementation, OSR and correlation length is the

most important parameters in determining the FOMB. An estimate of the power savings

based on transistor counts from recent articles is given in [18]. Results are reproduced in

figure 2.2 and modified to for the maximum practical cross-correlation length of 1024 bits

as found and implemented on the chip by Liseth [20]. The effective correlation window

length is N = 1024/OSR and estimated power savings may be shown to grow with an

increase in this correlation window length.

The above results are crucial for the choice of sampling rates used in the system. Signal

quality of Delta Sigma signal modulation is known to be highly dependent on the OSR of

the input signal. This is in conflict with the goal of reducing overall power dissipation by

the cross-correlation operation. To allow for the largest potential savings, OSR is kept at

the lowest practical value without sacrificing too much dynamic range in the modulated

signal. This is shown in chapter 3 to be OSR = 8.

17

2 System overview

2.2.1 Module interface

The bitstream cross correlator takes two Delta Sigma modulated single bit signals as input.

One of the signals is loaded into a template register at start-up and does not change during

normal operation. The other signal is input by shifting through a register synchronously

with the system clock. Output from the unit is a multi-bit sum of all equal valued bits in

the input signals.

To ensure sufficient signal resolution in the system, the internal data bus width is decided

as a result of the maximum possible window size of 1024 bits for the cross-correlation unit.

This results in a range of 1024 = 210 possible output values after summation of multiplied

bits, hence all PCM word sizes in the system is set to 10 bits. This is also sufficient

resolution to properly evaluate the filtering modules.

The exact characteristics of the output signal was not investigated until after chip pro-

duction. For this reason, the decimation filter following the cross-correlation module is

designed for the general case as shown in figure 2.1, where the output after processing is

assumed to be a single bit stream with a frequency domain characteristic similar to that of

the input signal.

2.2.2 Convolution

The operation of convolution is closely related to cross-correlation. For discrete time real

signals, the operations are interchangeable by time-reversing one of the signals. Hence the

cross-correlation circuit may be used for convolution by reversing the stored template used

for calculation. This implies that the circuit may also be used for effective implementation of

programmable FIR filters by loading the template register with the bitstream representation

of the filter impulse response.

However, typical FIR filter impulse responses have a composition not well suited for Delta

Sigma modulation. High order filter functions commonly requires a large dynamic range to

represent the impulse response. This may be seen by considering the low-pass filter design

approach described in section 4.1. Applying a window function to a sinc shaped function

necessarily results in a large center value and very small variations away from the center.

Modulation of such a signal would require a very high OSR to preserve the dynamic range.

Although this is difficult to achieve for high speed circuits, it may have value in real-world

applications where signal frequencies are very low.

2.3 System evaluation

To evaluate the system and effects of trade-offs made, two criteria are put down for the

system. The signal processing block is the overall largest part, and has its own criteria,

namely performing precise cross-correlation while using as little power as possible. The

18

2.3 System evaluation

data conversion part of the system is a smaller part of the total, and the overall power

criteria is reflected in the restriction to an OSR of 8 as discussed in 2.2. The conversion

blocks are to provide a recoding of the signal while maintaining signal quality and without

adding too much to the overall power dissipation.

Bandwidth, or maximum speed of operation is considered unimportant for this system

as intended usage is for low and intermediate frequencies. The target operating range is

frequencies around common digital audio rates and lower.

Power estimate

Power is abstracted by the estimation presented in chapter 1.2, using frequency times tran-

sistor count. A high-level approach is necessary when designing filters and Delta Sigma

systems because of the complexity of resulting circuits. Hence it is useful to use a sim-

ple estimate because more precise calculations or simulations on transistor level quickly

becomes tedious for a large system.

SNR

Signal quality is quantitatively evaluated by its dynamic range, or SNR, of the signal after

filtering and recoding. The primary goal of the filters and DSM is to maintain a high

SNR. SNR is used throughout the analysis of the various filter blocks and the DSM, and

is measured as the ratio of signal power to the highest in-band noise power. This will be

further discussed in later chapters.

Figure of Merit (FOM)

In combining these measures, we arrive at a FOM for the system:

FOM =
SNR

Transistor count× fclk
(2.1)

This may be used in comparison between blocks performing the same function. For

instance, a comparison may be done between multi-rate filters only if their purpose is the

same. Using the above FOM for the DSM is not comparable with that of the decimation

filter, as their functions are different. Still, it is useful in summarizing the effect of trade-offs

done. It is left as a goal for design, rather than as an effective means of evaluation.

19

2 System overview

20

3 Delta-Sigma modulation

With advances in manufacturing technologies comes a change in the way circuits are effec-

tively designed. Smaller feature sizes allows more transistors on a single chip, but requires

a lowering of the supply voltages to keep power consumption down. Supply voltages of

1.0V and below greatly reduces the range where a transistor is in its strong inversion region.

For this reason, traditional methods for analog design conflicts with the benefits of using

a small feature process. Digital design methods on the other hand are able to fully profit

from smaller technologies.

Delta sigma converters have gained in popularity as they provide a solution to the prob-

lems associated with analog design on state-of-the-art processes. They are realizable in

low-cost CMOS processes using a minimum of sensitive analog circuitry. Converters using

this technique typically produce a high resolution over a moderate signal bandwidth.

Delta Sigma modulation has been around since the 1960s and has grown to a large field

of research. Several good books are available on the subject of using DSMs for AD and

DA conversion [31, 27].

An overview of the principles is given in the first two sections of this chapter. Emphasis

is on modulation in a fully digital system using a low OSR. Section 3.3 discusses design

and trade-offs for the digital-to-digital delta-sigma encoder that is implemented on chip.

Simulations of the DSM are presented in 3.4, showing about 5 bits of precision. The chapter

finishes with a brief discussion of arithmetic operations on bitstreams in section 3.5.

3.1 Digital Encoding

Common to all digital coding is the discretization of a signal, both in time and value.

Both sampling in time and quantization in value is done in A/D converters. Although A/D

conversion is outside the scope of this thesis, quantization of signal amplitude will be looked

into, as it is important in understanding differences between several coding forms.

A sampled and quantized signal may be represented digitally in several ways, the most

straight-forward being PCM. This refers to the common way of representing a digital signal

as a sequence of binary coded amplitude values.

Delta sigma modulation refers to a quite different approach to the coding of a signal.

21

3 Delta-Sigma modulation

3.1.1 Coding forms

Some coding forms are especially well suited for certain applications. As an example,

consider the the µ-law and A-law companding schemes used in most telephone systems

today. Logarithmic coding is effective for representing a speech signal. The human ear

is more sensitive to changes when the sound signal is small than in a signal with a large

amplitude. Hence, the resolution of such signals should be highest where the amplitude

is low. The A/µ-law companding uses quantization steps which are not equally spaced,

but proportional to the signal amplitude. This reduces the necessary bit-width and storage

requirements without largely affecting the perceived quality of the signal. In other words,

the coding utilizes knowledge about the signal’s environment to represent it in an efficient

manner. The same coding scheme is not suitable for any generic signal, but the recoding

makes it more suitable for specific cases.

Delta Sigma coding is an other way to represent digital signals. Although mainly used

as an intermediate code in data conversion, delta sigma has seen some use as the main

coding scheme in a commercial system. Super Audio CD (SACD) uses a specification

called Direct Stream Digital (DSD). This standard utilizes Delta Sigma modulation with

a high oversampling ratio to produce a bitstream. The bitstream is then compressed and

stored without conversion to PCM, as in done in ordinary music Cd’s[15]. The motivation

for using this coding seems purely to be an increase in sound quality by avoiding conversion

errors.

3.1.2 Quantization

Because of the close relation to A/D conversion, it is useful to consider quantization in

terms of discretizing a continuous input signal. The same considerations applies when

recoding a digital signal into fewer or differently spaced levels.

Quantization is simply the process of approximating a continuous amplitude using a

sequence of two or more ordered steps represented by binary values. Refer to figure 3.1

for two different examples of how a continuous signal may be quantized. The quantizer in

figure 3.1b is very simple to implement, either as an analog comparator or digitally as an

extraction of the most significant bit or the sign bit.

The quantization error erms of any quantizer, assuming an uncorrelated white noise

model of the error, is found to be

e2rms =
∆2

12

where ∆ is the step size of the quantizer.

22

3.1 Digital Encoding

-3

-5

-2

2 4 6

1

3

5

-1

-2-4-6

y

x

2

4

-4

2 4

-2-4-6

x

-1

1

6

(a) 11 step mid-tread quantizer with ∆ = 1

1

-1

y

x

1

-1

x

-1

1

-1

1

(b) Two step mid-rise quantizer with ∆ = 2

Figure 3.1: Input-output characteristics of two example quantizers. Quantization error is

shown below.

23

3 Delta-Sigma modulation

3.1.3 Oversampling

The Nyquist-Shannon sampling theorem states that a signal which is band-limited by f0 may

be fully represented by a sequence of equally spaced values, no further apart than 1/2f0.

For a good representation, the data points must be very precise in terms of magnitude

quantization. This is difficult to achieve in a converter, especially for low supply voltages,

due to very high demands of the analog components.

Oversampling refers to increasing the number of samples beyond the requirements of

the Nyquist theorem. The OSR is the ratio between the required Nyquist rate and the

oversampling frequency. This may be summed up as:

fs = OSR × fN = OSR × 2f0

The effect of oversampling on the quantization error is best viewed from the frequency

domain. The traditional assumption is that quantization error is truly uncorrelated with

the input signal and has a uniform random distribution. This is a simplification, but is valid

for most cases where the input is highly active. This leads to a well-known formula for

the amount of quantization error in a limited signal band. Given the spectral density of

sampled white noise

E(f) = erms

√
2

fs

Integrating for total quantization noise power within band of interest

q2rms =

∫ f0

0

E2(f) df = e2rms
2

fs

∫ f0

0

1 df = e2rms
2f0
fs

Inserting for OSR gives the relation between in-band noise power q2rms and OSR:

q2rms =
e2rms
OSR

This result shows that each doubling of the Oversampling Ratio (OSR) increases the

resolution by a factor of
√

2, or 3dB.

Oversampling may be used as a simple method for increasing the resolution of any ADC.

Several common micro-controllers contain a moderate resolution ADC. This provides a

cheap method of increasing the resolution in applications where speed requirements are

low. It is not very effective; an OSR of 4096 is required to increase ADC resolution by 6

bits. [4]

3.1.4 Noise shaping

Although not very effective in itself, oversampling is necessary for the concept known as

noise shaping. Put simply, this is the filtering of quantization noise from a flat spectrum into

24

3.1 Digital Encoding

X(z) V(z)

E(z)

Y(z)

Integrator/Loop filter Quantizer

Figure 3.2: First order Delta Sigma modulator model. Quantizer replaced by injected error

signal.

−1

1

(a) Ramp signal

−1

1

(b) Sinusoid signal

Figure 3.3: Operation of a 1. order DSM in the time domain. OSR = 300.

25

3 Delta-Sigma modulation

a spectrum with more high-frequency content and less low-frequency content. Noise power

is moved outside the signal band, while leaving the signal power unaffected, thus increasing

the SNR. This is done by applying different filtering functions to the input signal and the

quantization error signal. Figure 3.2 shows the linear equivalent of a first-order DSM. The

quantizer is replaced by the addition of an error signal, assumed to be independent of the

input. This model may be used to determine the two transfer functions for the signal and

the noise. From the figure

V (z) = z−1
(
V (z) + X(z)− Y (z)

)
=

z−1

1− z−1
(
X(z)− Y (z)

)

The output is given by

Y (z) = E(z) + V (z)

= E(z) +
z−1

1− z−1
(
X(z)− Y (z)

)
(1− z−1)Y (z) = (1− z−1)E(z) + z−1X(z)− z−1Y (z)

Y (z) = (1− z−1)E(z) + z−1X(z)

This gives a Noise Transfer Function (NTF) with a simple filter shape and a Signal Transfer

Function (STF) which is only a single delay on the input. DSMs may also be made delay-

free by moving the integrator delay step and adding an additional delay in the feedback

loop.

NTF (z) = 1− z−1

STF (z) = z−1

This noise transfer function response is shown in figure 3.4 together with that of a second

order modulator. The time domain output from a two-step first order DSM is shown in

figure 3.3. Using a high OSR for illustration, it is possible to see how the average value

of the 1-bit output approximates that of the input. However, a frequency domain analysis

is necessary to get a good measure of the quality of the modulated signal. This is further

detailed in 3.2

3.1.5 Higher order modulators

The noise shaping of the first order modulator is not effective enough for high quality

signal encoding. The filter functions NTF and STF of the modulator may be extended

for more efficient noise shaping. By simply adding more integrator steps, the order and

26

3.1 Digital Encoding

10
−2

10
−1

10
0

10
−6

10
−4

10
−2

10
0

10
2

Normalized frequency (0 → π)

M
ag

ni
tu

de

1. order
2. order
no shaping

Figure 3.4: Noise transfer function response for 1st and 2nd order modulators. NTF = 1

is also shown for comparison.

H(z) Q
x y

(a) Single feedback structure

H(z)

Q

-e

x y1

(b) Error feedback structure

Figure 3.5: General modulator structures showing loop filter placement.

noise-shaping effect of the modulator is increased. This introduces instability problems, and

requires careful design methods for the modulator to be usable. When designing modulators

of a higher order, it is useful to consider the general model using a loop filter as shown in

figure 3.5a. The filter may then be analyzed and implemented as any ordinary discrete-time

filter.

Most research and and books in the field of delta sigma modulation are directed towards

higher order modulators, as these are effective in high quality data conversion [27, 31].

These publications tend to treat DSMs in the light of conversion between analog and

digital. In the field of Radio Frequency (RF) systems, fully digital DSMs are used in the

conversion between PCM coded signals and frequency or phase domain signals [6].

27

3 Delta-Sigma modulation

4 8 16 32 64 128 256 512 1024
−120

−100

−80

−60

−40

−20

0

Q
ua

nt
iz

at
io

n
no

is
e

le
ve

l (
dB

)

OSR

N=1

N=2N=3N=4N=5N=6

Figure 3.6: Theoretical in-band noise power for modulators of orders 1 through 6

3.2 Coding Efficiency

For a code to be useful it must provide benefits to outweigh its disadvantages, at least

for specific applications. The main trade-off in using a Delta Sigma coding is between

signal quality and the increased clock rate. This may lead to an unacceptable power

consumption, if the oversampling ratio is high and if there are no significant benefits in

using the oversampled coding. The increased clock rate may also impose limits on the

maximum signal bandwidth, especially when the oversampling ratio is large.

For this reason, delta-sigma coding is normally only used as an intermediate code in

the converter steps between analog and digital, while PCM is commonly being used for

digital data processing. Depending on the application, it may be possible to exploit the

oversampled coding in other ways, such as improvements of an algorithm or reduction of

circuit complexity.

Ideal Noise Transfer Functions (NTFs)

From the low order modulators described in section 3.1, it is clear that the noise shaping

ability of a modulator decides the quality of the resulting signal. The dependency of signal

quality on modulator structure is interesting and thoroughly covered in several texts [27,

28

3.2 Coding Efficiency

31]. In theory, the Signal to Quantization Noise Ratio (SQNR) may be generalized for

modulators consisting of simple feedback loops with all coefficients equal to unity. These

modulators have simple noise transfer functions (NTFs) of the form:

NTF = (1− z−1)N

where N is the number of loops and determines the order of the modulator. The quanti-

zation noise power within the signal band may be shown to approximately follow

q2rms =
π2Ne2rms

(2N + 1)OSR2N+1

and a summary of the most interesting range of values is shown in figure 3.6 on the

preceding page. The figure shows how each doubling of the OSR increases the number of

bits of resolution by N + 0.5 [31].

Practical Delta Sigma Modulators (DSMs)

It is important to note that these values unfortunately seem impossible to achieve in prac-

tice, mainly due to the instability problems of any single loop modulator of order higher

than one. For this reason, it is necessary to modify the NTF of a high order modulators,

reducing its noise-shaping ability. This will inevitably cause achievable signal quality to be

much lower, especially for low oversampling ratios combined with higher order modulators.

Several techniques have been developed to counteract this decrease of quality. Most impor-

tant are multi-bit quantizers and cascaded modulator architectures, both of which produce

multi-bit word streams. They will thereby lose several of the benefits of true single bit

coding. Another successful technique is improving the NTF of the modulator by spreading

its zeros across the signal band, thus further reducing quantization noise levels near the

upper frequency of the signal band.

An empirical study shows that even with optimally placed zeros, the practical SNR for

modulators of orders 5 through 8 lie below 40 dB for an OSR of 8, and below 70 dB for

an OSR of 16. The results are taken from [31, p.112] and summarized in figure 3.7.

3.2.1 Signal quality

A direct comparison of PCM and Delta Sigma coding efficiency is somewhat difficult, as a

single PCM sample does not correspond directly to a number of Delta Sigma bits. DSMs

have some internal memory in the loop filter and the feedback makes each output value

depend on several of the previous values. Additionally modulators do not have a finite

impulse response, meaning that any input value will continue to affect the output for an

infinite duration. Even a zero signal input will produce a highly active output signal after

modulation. However, for long signals, consisting of several PCM samples, it is possible

29

3 Delta-Sigma modulation

4 8 16 32 64 128 256 512 1024
0

20

40

60

80

100

120

140

N=1

N=2
N=3

N
=

4

N
=

5
N

=
6

N
=

7
N

=
8

S
ig

na
l t

o
N

oi
se

 r
at

io
 (

dB
)

OSR

PCM
DSM

Figure 3.7: Empirical SNR for single-bit modulators of orders 1 through 8. NTFs with

optimally placed zeros. Also shows SQNR for PCM code using same number of bits

N = OSR. Empirical data from [31, p.112]

to compare the two by considering their SNRs. The SNR of a PCM coded signal may be

calculated as the signal to quantization noise ratio:

Smax
NQ

= 20 log10 2N + 20 log10

√
3

2

In the case of Delta Sigma, the efficiency of the coding is largely dependent on the

modulator used, and it is not possible to calculate an SNR without exact knowledge of

the modulator’s transfer function. As mentioned earlier, the signal quality is dependent on

the noise-shaping ability of the modulator. An estimate may be found from the in-band

quantization noise level (see Fig.3.6), but the white noise model used does not account for

nonlinear effects such as idle tones and harmonics in low order modulators. Although there

are methods for theoretically calculating modulation quality, these are quite complicated[31,

3].

A more common method is to measure the SNR from the frequency spectrum of a

modulated signal. This is done using a maximum amplitude sinusoid test signal. The SNR

30

3.2 Coding Efficiency

10
−2

10
−1

10
0

−60

−40

−20

0

20

Normalized frequency (0 → ω
s
)

M
ag

ni
tu

de
 (

dB
)

Original NTF
Optimized NTF

Figure 3.8: Effect of optimized zeros in a second order NTF, assuming OSR = 8. Nyquist

frequency is indicated by dashed line.

is measured from the peak at the signal frequency to the highest non-signal component

within the signal band. The result is the highest achievable SNR for the given test signal

frequency. Other frequencies may cause tonal behavior within the passband, hence reducing

the SNR. Obviously it is not possible to measure the SNR using test signals of every

frequency and the measurement process turns into a somewhat inexact science. On the

other hand, real-life signals tend to be more complex than simple sinusoids, and for these

less regular signals the method has proven empirically to be a sufficiently good estimate of

the SNR.

For one-bit modulators, Delta Sigma coding would be more efficient in terms of storage

than PCM coding, if a given SNR may be achieved with a lower value for OSR than

the PCM word-size. A comparison between the SQNR of PCM and simulated single bit

modulators of a wide range of orders and OSRs is given in figure 3.7 on the facing page.

From the figure, it is clear that PCM coding provides a higher information content per bit

than any of the studied modulators. Even if delta-sigma coding does require more bits to

represent a given signal than PCM does, it has other properties to make it attractive as an

coding form.

3.2.2 Optimized NTF

The transfer function for a simple DSM does not give the optimal noise shaping effect for

a given OSR. For a given OSR, it is possible to find a modified transfer function that has

a somewhat lower NTF response at the corner frequency. From a z-domain point of view,

this is done by spreading the zeros of the NTF away from the real axis. In the frequency

31

3 Delta-Sigma modulation

domain, this translates to moving the lowest frequency response value away from zero and

towards the Nyquist frequency fN/2. The effect is shown in figure 3.8.

Noise power is higher for lower frequencies, but is spread out over the signal band,

resulting in slight improvements in overall SNR. Expected SNR improvement may be shown

theoretically to be 3.5dB [31].

3.2.3 True serial representation

One of the main advantages of Delta Sigma code is simplicity, as a true one-bit serial

representation of a signal. This is in contradiction to a multi-bit PCM signal. In its

simplest implementation, the bits of a PCM signal are stored in parallel and processed in

parallel. The signal may also be transmitted along a single electrical wire, by rearranging

bits in time such as is done in any parallel to serial interface. Although only a single bit is

processed at a time, the organization of bits into words must still be kept track of. PCM

bits may always be sorted by significance, from most significant bit to least significant bit.

3.2.4 Robust coding

A Delta Sigma signal has no inherent ordering of the bits. The signal value is represented

using several bits serialized in time, where each bit has the same weight on the signal value.

This property is one that makes Delta Sigma a fault tolerant coding, since a few bit-errors

will have less impact on the signal value than in PCM coding. Figure 3.9 shows the results

of a simple test of how a small amount of bit-errors impact on signals in PCM and Delta

Sigma coding. The Delta Sigma signal is oversampled by 64, modulated with a second

order modulator, and reconstructed using a high order FIR-filter. Bit errors are introduced

by flipping bits at random, with the same probability per bit for both the PCM and Delta

Sigma signal. Delta Sigma coding has been shown to be a good way of implementing fault

tolerant arithmetic operations and filters[32].

3.3 Delta Sigma Encoder

The purpose of a Delta Sigma Encoder is to convert a digital PCM signal into a bitstream

representation while losing as little information as possible. While it is possible to use

multi-bit quantization, many of the benefits of the code is only available when quantized

to a single bit.

3.3.1 Digital-to-digital

The design of a fully digital encoder is somewhat different from that of an analog to

digital converter. Obviously an encoder does not require any analog components. All

32

3.3 Delta Sigma Encoder

0 1000 2000 3000 4000 5000 6000
−1

−0.5

0

0.5

1

Distorted signal
Original signal

(a) 16 bit PCM coded signal

0 1000 2000 3000 4000 5000 6000
−1

−0.5

0

0.5

1

Distorted signal
Original signal

(b) Reconstructed Delta Sigma coded signal. OSR = 64

Figure 3.9: PCM and Delta-Sigma coded signals with 0.02% of bits randomly inverted.

Signals are shown both with and without errors.

33

3 Delta-Sigma modulation

arithmetic operations are performed digitally. For a given input signal and initial state,

the resulting bit sequence turns out the same in any number of attempts. Thus the

encoder is fully deterministic, without the semi-random states associated with analog noise.

Without analog components, process variations does not cause any discrepancies between a

modelled system and its implementation in silicon. This makes it possible to use computer

simulations on a higher level in the design process. Properties of the modulator may be

precisely determined from simulations.

The fully digital system also causes some problems to be more apparent due to the

lack of random variation of states. The deterministic behaviour increases periodicity in the

modulator, causing pattern noise and limit cycles. A thorough study of these effects in a

digital encoder, as well as a proposed solution is found in [6].

3.3.2 Requirements

Cross-correlation requires bitstream

The cross-correlation algorithm needs a true one-bit delta sigma signal representation to

be valid. This drastically limits the amount of available choices for modulator structures.

It rules out any modulator structure based around addition or subtraction at a stage later

than the quantization. This includes the popular Multi-stAge noise SHaping (MASH) type

of DSM. Several alternative structures are designed especially for low OSR operation, but

are unsuited for the same reason. They depend on modulation in parallel before combining

signals into a multi-bit delta-sigma word stream [22, 17].

Efficient cross-correlation requires low OSR

As discussed under section 2.2, the predicted savings in power consumption in the cross-

correlator requires a low OSR. The system as a whole aims to demonstrate this principle,

hence it is important to use as low OSR as possible. As discussed under section 3.2, the

modulated signal quality quickly deteriorates as the OSR is lowered. An OSR of 8 is chosen

as it is considered the best trade-off between signal quality and potential power savings of

the bitstream cross-correlation. A lower OSR than 8 is hardly possible. As predicted by the

results in figure 3.7, give an achievable SNR around 20dB, making it very hard to evaluate

the quality of the rest of the system.

The restriction of OSR also affects the choice of modulator structure. Using several

modulators in a series cascade may possibly result in single-bit output in certain cases.

This subject is barely touched upon, as it requires a high oversampling ratio to allow a

change in sampling rate at each step. This is clearly not an option for an OSR of 8.

34

3.3 Delta Sigma Encoder

3.3.3 Design choices

Of all the main blocks in the system, the modulator requires the smallest number of com-

ponents, yet it is the single bottleneck limiting the signal quality of the whole system. For

this reason, design choices for the encoder are directed only towards increasing the SNR,

as this is reflected directly on the overall signal quality. Hardware complexity is only briefly

considered, as it will have only a minor impact on the overall system power consumption.

Second order modulator

Initially a third order modulator was desired, but the choice of a second order seems natural

after the OSR is decided. With an OSR as low as 8, the SNR gain of using a higher order

modulator is already shown to be very small, if any. Figure 3.7 shows how the greatest

advantage in quality is gained by going from a first to second order DSM at the given OSR.

A third order modulator is known to exhibit less tonal behaviour than the second order.

On the other hand, a second order modulator requires less design and simulation time to

ensure stability.

In terms of hardware complexity, the choice of a second order modulator is sensible. The

first order modulator requires one delay element and two adders. A modulator generally

requires one delay element, one multiplier and two additional adders per order beyond

the first. Increasing from first to second order roughly doubles the number of hardware

elements, while increasing the predicted SNR by about 5dB. Similarly, an increase from

second to third order increases complexity by about 1.5 times, highly dependent on the

multiplier structure used, without a similar increase in expected SNR.

Error feedback structure

The fully digital arithmetic operations internal to the encoder allows for the choice of

a structure based on error signal feedback instead of a single bit feedback loop. These

structures are shown in figure 3.5a and 3.5b on page 27.

Remembering the error injection model of the quantizer, the transfer functions for this

structure is quite simple to read from the figure.

Y (z) = X(z) + E(z)−H(z)E(z) = X(z) +
[
1−H(z)

]
E(z)

Giving an STF of 1 and an NTF of 1−H(z). The error-feedback structure is not suitable

for analog filters, as it is very susceptible to component mismatch in analog realization of

addition and filter coefficients [31].

For digital implementations, arithmetic precision is not an issue and the structure may

prove to be somewhat more hardware-efficient. The error feedback signal is shown as a

subtraction in the figure, but this is in fact realizable without any hardware. The error

signal is simply the remaining LSBs not used in the output, and may be fed directly to the

35

3 Delta-Sigma modulation

���������	

Figure 3.10: Second order error feedback structure with IIR filter.

loop filter. NTFs consisting of zeros only may be realized by a FIR loop filter, which further

simplifies the modulator somewhat in terms of analysis and implementation.

The basic second order modulator may be realized using only two adders and two registers

as opposed to four adders and two registers using the ordinary single bit feedback.

Bit width

The necessary bit width for the DSM input is related to the achievable SNR. Modulator

SNR is expected to be quite low. To enable proper measurements of the DSM the incom-

ing signal should have a somewhat higher resolution than the output. This ensures that

resolution is not becoming a limiting factor. The standard way of expressing resolution is

to calculate the Effective Number of Bits (ENOB) corresponding to the SNR level. This

is defined as the number of bits necessary to recreate a PCM coded sinusoid with a given

SNR.

ENOB =
SNR − 1.76

6.02

For an expected SNR of 35−40dB the upper limit is ENOB = 6.4. In other words, at least

7 bits must be used to ensure that the modulator is not limited by a low input resolution.

Loop filter with optimized zeros

The goal of producing as high quality output as possible, justifies use of an NTF with

optimized zeros as described under section 3.2.2. This unfortunately removes some of

the benefits of the error-feedback structure, as the filter needs to be an IIR type, having

both feedback and feed-forward coefficients. Hence, the differences in hardware complexity

between the error feedback and a single bit feedback becomes smaller for IIR loop filters.

As seen from figure 3.10, the exchange of a FIR-type filter for an IIR filter introduces

36

3.4 Simulations

Generate
10 bit test signals

Rand

Unit
under test

y=x>>n

double 2>>9

Hanning windowBuffer

frq_out

To Workspace

|FFT|²

Fourier transform

Shift to 10 bits

0101...

Quantization

Conversion
and scaling

Periodogram

Filter and resample

Figure 3.11: Simulink setup for calculating spectrograms.

two multiplication steps and two adders into the loop. Expected increase to SNR is only

3.5dB [31]. Hence it is an expensive method in terms of SNR vs. power for the DSM

alone, and is only justifiable in the given context.

The noise transfer function is found using the Schreier’s Delta Sigma toolbox for MAT-

LAB. The software package includes functions for determining optimal spread of zeros in

the NTF for a given modulator order and OSR. A good description of use and limitations

is given in [31]

NTF =
z−2 − 1.949z−1 + 1

z−2 − 1.203z−1 + 0.4299

H(z) for the error feedback structure may be found by substituting the b/a form for the

NTF.

H(z) = 1− NTF = 1−
b

a
=
a − b
a

H(z) =
−0.7462z−1 + 0.5701

z−2 − 1.203z−1 + 0.4299

The filter function H(z) may be realized in the error feedback structure shown in figure 3.10.

3.4 Simulations

The DSM and filter blocks are all simulated using MATLAB and Simulink. The setup used

is shown in figure 3.11. Some variations are used in scaling, depending on which filter is

tested. This is to normalize all outputs to the same range for comparability.

37

3 Delta-Sigma modulation

0.01 0.1 1
−50

−40

−30

−20

−10

0
S

x’(ω
)

(d
B

F
S

/N
B

W
)

Normalized frequency (0 → π)

SNR=31.2 dB

Figure 3.12: PSD of simulated modulator. Nyquist rate bandwidth indicated by dashed

line.

0 0.2 0.4 0.6 0.8 1
10

15

20

25

30

35

40

Normalized input frequency (0→ f
N

/2)

S
N

R

Figure 3.13: Calculated SNR for a range of input sinusoid frequencies. Simulations are run

once for each input. Harmonics lowers SNR for fin < fN/6.

38

3.4 Simulations

The model of the DSM is made to resemble the implemented circuit as closely as possible

and uses bit shift operations to implement all coefficients in the loop filter as described in

detail under section 6.1.5. Figure 3.12 shows the power spectrum of the modulator output

when using an input signal of 0.7 sin(0.95ωN) sampled at 8 times the Nyquist rate. The

signal to in-band quantization noise ratio is about 32dB in this simulation, which is within

the expected values of 30− 40dB for a one-bit modulator at an OSR of 8. [31]

A more extensive study of the performance shows that the modulator is subject to in-

band pattern noise. A sweep is done over a range of input frequencies and is shown in

figure 3.13. The simulation is performed on a cascade of the final interpolation filter and

the DSM. SNR is simulated and measured by script for each input sinusoid. Results in the

figure show clearly how the signal quality is significantly poorer for inputs below frequencies

of about fN/2
3 . The reason is found by looking closer at the Power Density Spectrum (PSD)

of such a simulation. Harmonics occur at three times the input frequency and is the largest

single source of unwanted noise on the output. Introduction of dithering in the modulator

may have improved its modulation qualities.

The simulated SNR closest to the Nyquist frequency is in the transition band of the

interpolation filter, and will not have its images sufficiently attenuated, resulting in a poor

overall SNR.

3.4.1 Periodogram

The spectra used to characterize filter responses are calculated using Welch’s method [30].

Time domain data is divided into overlapping sequences of length 8192 samples, with an

overlap length of 1024 samples. All sequences are windowed using a length 8192 Hann

window before applying a magnitude-squared Fast Fourier Transform (FFT). Normalization

of the spectrum is done such that a full scale sinus signal is shown as 0dB [31].

Simulation of these models in MATLAB/Simulink runs in only a few seconds, using

relatively large amounts of data. Some experimenting is done with different lengths of data

and different numbers of averages for calculating the spectrograms. The final number of

8192 sequences is chosen as a compromise between simulation time and required resolution.

Increasing data length beyond this does not increase resolution significantly. Shorter data

lengths are sufficient, but the features of the spectra are clearer when large sequences are

used.

The number of averages used in the spectra lie between 5 and 50, due to differences

in sampling rates between filter types and between input and output rates. The difference

between spectra is not problematic, as averaging mainly serves to smooth the graphs.

39

3 Delta-Sigma modulation

A

B

Carry

S

Ci

Figure 3.14: Structure of bitstream adder

3.5 Bitstream signal processing

The idea of signal processing directly on a DSM bitstream is motivated by several ad-

vantages when comparing to the traditional Nyquist rate multi bit alternative. Signal

processing applications are often based around some form of sensor readout and requires

an AD conversion in its initial step. Delta sigma converters are already in widespread use

for this purpose, but requires digital-to-digital conversion before signal processing. Using

bitstream processing methods eliminates the need for conversion steps between a Digital

Signal Processing (DSP) and ADC/DAC, thus saving hardware.

Secondly, signal routing in a serial system is significantly simplified compared to parallel

multi-bit systems. This also saves hardware area and simplifies the implementation.

Some arithmetic operations have proven to be quite effective when implemented in a

bitstream environment. The cross-correlator is an example of this. There are also some

drawbacks to the use of bitstream operations. Operations are less intuitive and harder to

understand than their PCM counterparts. This results in more design and simulation time.

More importantly, some operations may not be possible to realize, or realizations may not

reasonable.

3.5.1 Addition

The most basic arithmetic operation is addition of two signals. Different implementations

of bitstream addition are possible. A structure using a very simple form of noise shaping

in the adder topology is presented in [29] and shown in figure 3.14. Its main advantage

is simplicity. Using only an ordinary full adder circuit and a single delay element, enables

addition of two single bit DSM sequences. The complexity is the same as for the serial

adder discussed in section 6.1.6. Unfortunately, the addition introduces some amount of

noise, and the resulting signal has a slightly poorer SNR than each of the operand signals.

This is seen from figure 3.15 on the next page.

The addition may also be solved by the time-interleaving of two bitstreams. This requires

a doubling of sampling rate to avoid loss of quality. Yet another approach is adding by

averaging the two bitstreams [11]. An improved adder implementation is presented in [19]

and is able to work at around 1GHz.

40

3.5 Bitstream signal processing

10
−4

10
−3

10
−2

10
−1

10
0

−70

−50

−30

−10

10

M
ag

ni
tu

de
 (

dB
)

Normalized frequency (0 → π)

Sum
A
B

Figure 3.15: Signal quality after bitstream addition. OSR = 64

3.5.2 Multiplication

A simple multiplier using either the logical AND or XNOR operation is proposed, but

results of this operation is not immediately satisfactory [29]. A large amount of samples

are required for the value to settle requiring a very large oversampling rate. Even when

settled, the signal quality is lowered significantly below that of the inputs. The value of

such a circuit lies in its simplicity of implementation when compared to binary multipliers.

Only a single gate is needed to achieve a crude multiplication of slowly varying signals. A

quick simulation of the multiplication shows that it is hard to achieve a resolution better

than about 20dB, even when very high oversampling ratios and high order modulators are

used.

41

3 Delta-Sigma modulation

42

4 Interpolation

A fully digital DSM encoder is used to perform the conversion from a binary encoded PCM

signal to its oversampled bitstream representation. The encoder requires an oversampled

input signal. For an analog DSM, oversampling is performed directly in the analog parts

of the modulator by clocking these at the oversampling frequency. For a digital DSM, the

oversampling of the incoming PCM signal is done by calculation in a digital interpolation

filter as shown in figure 4.1. The filter increases the sample rate while maintaining the

word size of the samples.

The theoretical background behind interpolation is given in section 4.1, aimed towards

band-limited interpolation using digital filters. Requirements of the filter in a Delta Sigma

system are identified in section 4.2. A two-step digital interpolation filter is designed for

keeping hardware complexity low. An efficient FIR filter is presented in section 4.3. The

CIC filter class is briefly discussed while stating reasons for parameter design choices in

section 4.4. Because of the similar design of CIC filters for interpolation and decimation,

both are discussed in this chapter, while details specific to the decimator implementation

are given in chapter 5. Finally, models and simulation results for the interpolation filter are

presented under 4.5.

4.1 Interpolation filter

The purpose of an interpolation filter is to up sample a signal, without either removing

or adding information content. A signal sampled at the Nyquist rate is re-constructable

according to the Nyquist theorem. An ideal Nyquist rate DAC may perfectly reconstruct

a signal in the analog domain with frequency components up to fN/2. In other words,

the information content in a Nyquist rate signal is band-limited by fN/2, where fN is the

Nyquist rate
PCM

DSM

Oversampled
PCM

Oversampled
bitstreamInterpolation

filter

Figure 4.1: Upsampling from Nyquist rate to oversampling rate prior to Delta Sigma mod-

ulation.

43

4 Interpolation

Nyquist sampling rate.

There are a few different approaches to the interpolation problem. A simple, but imprac-

tical approach is to reconstruct the analog signal, and resample it again at a higher rate.

This requires both an A/D and and a D/A conversion, which in turn is inefficient and may

introduce both non-linearities, analog noise and further quantization errors in the resulting

signal. Advantages of this method is that the rate change factor may be arbitrarily chosen,

and it does not result in imaging due to upsampling.

The more common approach is to interpolate directly in the digital domain by recreating

the desired number of samples in between the known samples. The simplest way of filling

in the blanks is to copy the previous known value. The hardware implementation is very

simple. A register sampling at the increased clock rate is all that is needed to perform what

is known as a zero-order interpolation.

It is useful to consider this operation on a higher abstraction level. From a signal

processing point of view, this equals a two step process. First the signal is upsampled, or

zero-padded, with the necessary number of samples to increase the rate by the interpolation

factor. Then a filter is applied to the signal, calculating the missing values. The FIR filter

performing a zero order hold interpolation is

h0[n] =

I−1∑
k=0

h0[n − k]
Z↔ H0(z) =

I−1∑
k=0

z−k

Its effect on a signal zero padded with I − 1 samples is illustrated in figure 4.2a.

This is obviously no good approximation of the original signal, and may be improved

using first order or linear interpolation. Unknown samples are instead calculated along the

straight line between two neighboring samples. The filter interpretation of this operation

is easiest to find using the continuous time function of a general linear interpolation.

y = y0 +
y1 − y0
x1 − x0

(x − x0)

Inserting for the two known discrete time values x [0] and x [1] for a sampling time T = IT ′.

y [n] = x [0] +
x [1]− x [0]

IT ′ − 0
(nT ′ − 0), 0 ≤ n < I

This may be rewritten as

y [n] =
(

1−
n

I

)
x [0] +

(n
I

)
x [1], 0 ≤ n < I

As with zero order interpolation, the length of the necessary filter is simple to find. For

each output value to be a function of exactly two of the original samples, the length of the

filter must be N = 2I− 1. The impulse response of the required interpolation filter may be

44

4.1 Interpolation filter

−1

0

1

Time

A
m

pl
itu

de

Original
Interpolated

(a) Zero order

−1

0

1

Time

A
m

pl
itu

de

Original
Interpolated

(b) First order

−1

0

1

Time

A
m

pl
itu

de

Original
Interpolated

(c) Second order

Figure 4.2: interpolation by eight. Outputs are shifted for comparison.

45

4 Interpolation

0 0.25 0.5 0.75 1
−60

−40

−20

0

20

Normalized frequency (0 → π)

M
ag

ni
tu

de
 (

dB
)

Zero order
First order
Second order

Figure 4.3: Frequency domain response of simple interpolation filters. I = 8.

shown to have a triangular impulse response [30]. Calculating the z-transform of the filter

yields the square of the zero-order hold filter transfer function.

h1[n] = h0 ∗ h0
Z↔ H1(z) = H0(z)2 =

[I−1∑
k=0

z−k
]2

Higher order interpolation functions are found by increasing the power of the transfer

function. The first three powers are illustrated in figure 4.2 on the preceding page. Starting

with the second order interpolation, the resulting function is not guaranteed to pass through

the original data points. In fact, only slowly changing signals will properly pass through

the correct data points due to frequency dependent attenuation. This effect is easy to see

from the Fourier evaluation of the filter function. Frequency responses for these simple

filters are shown in figure 4.3 and their limitations may be seen in detail. Higher frequencies

within the passband are significantly attenuated. This motivates the use of a more complex

filter with a flatter passband frequency response.

4.1.1 Ideal interpolation

The ideal interpolation filter is the brick-wall filter with a cut-off at half the original sampling

rate and a flat passband (Fig.4.4). The impulse response of such a filter is found by the

inverse Fourier transform and is well known to be the sinc function, which in continuous

time is given by

g(t) =
sin(πTs t)

π
Ts
t

(4.1)

46

4.1 Interpolation filter

0 0.25 0.5 0.75 1
−Inf

0

20

Normalized frequency (0 → π)

M
ag

ni
tu

de
 (

dB
)

Figure 4.4: Frequency response for the ideal interpolation filter using I = 8. Passband gain

equals I.

where Ts is the original sampling interval. This function oscillates around zero for an

infinitely long interval, with zero-crossings at every integer multiple of Ts except zero.

The ideal interpolator thus requires an infinitely long filter, and only an approximation is

practically possible. This knowledge is the basis for design of band-limited interpolation

filters with better performance than the sinc-in-frequency filters described in section 4.

Interpolation by the sampling theorem

The background for band-limited interpolation may be explained in terms of the sampling

theorem. The sampling theorem states that a band-limited signal may be completely recre-

ated from its samples given that the sampling rate is higher than two times the bandwidth.

Shannon has shown how such a signal may be recreated by the ideal interpolation for-

mula [33].

x(t) =

∞∑
m=−∞

x(mTs)
sin
(
π
Ts

(t −mTs)
)

π
Ts

(t −mTs)
(4.2)

The formula consists of a sum of the sinc function g(t) in equation 4.1, shifted by nTs and

weighed by the discrete time samples x [m] = x(mTs). This describes the signal in the time

domain, but requires an infinite number of samples and the infinite length sinc function,

which reduces the practical use of the formula.

In theory, this is useful in showing how to find the ideal interpolation filter. Assume a

resampling of the time-domain signal x(t) at a higher sampling rate such that Ts = ITh.

Since the initial bandwidth is smaller than the new bandwidth, the requirements of the

sampling theorem is still satisfied and equation 4.2 may be rewritten with the smaller

47

4 Interpolation

sampling interval.

x(t) =

∞∑
m=−∞

x(mTs)
sin
(
π
ITh

(t −mITh)
)

π
ITh

(t −mITh)
(4.3)

Substituting for the discrete time sequences x [m] = x(mTs) and x [n] = x(nTh), which are

the initial samples and the interpolated samples, respectively.

x [n] =

∞∑
m=−∞

x [m]
sin
(
π
I (n −mI)

)
π
I (n −mI) (4.4)

For clarity, this may be rewritten as the sum of the sinc function weighed by the original

sample values and shifted in time.

x [n] =

∞∑
m=−∞

x [m]g[n −mI] (4.5)

The sinc function in discrete time may be written as

g[n] = I
sin
(
nπ
I

)
nπ

(4.6)

The frequency response of this function may be shown to be the brick wall filter. For I = 8,

this function is shown in figure 4.4 on the previous page.

Interpolation as convolution

Equation 4.5 resembles a convolution, except for the difference in sampling rate between

the indexes n and m. This is solved by introducing the zero padded sequence x̃ [k], which

has the same values as x [m], but with I − 1 zero values in between. The zero valued

samples does not affect the summed result, so these sequences may be interchanged freely.

This allows for the exchange of summation indexes with a set of indexes k = mI, using

the same sampling rate as n.

x [n] =

∞∑
k=−∞

x̃ [k]g[n − k]

or, with the asterisk as convolution operator

x [n] = x̃ [n] ∗ g[n] (4.7)

This result is the convolution of the ideal filter sequence with the zero padded input se-

quence. This means that the interpolation may be implemented using an upsampling

followed by an ordinary FIR filter.

48

4.2 Cascaded interpolation filter

−1

0

1

Time

Original
Upsampled

Figure 4.5: Upsampling by zero padding introduces new frequency components into the

representation of the signal.

Upsampling causes imaging

Upsampling a signal by zero padding causes what is known as images in the output signal.

The upsampled signal is a representation of the original frequency components as well as

higher frequency components caused by the introduction of zeros. Figure 4.5 illustrates

how zero padding of a sinusoid introduces unwanted frequency components into the signal.

Approximation of the ideal filter

The ideal discrete interpolation filter is based on two requirements that are impossible in a

practical implementation. The filter sequence g[n] must be infinitely long, as it asymptoti-

cally approaches zero. Secondly, the sampled sequence is required to be strictly band-limited

by the sampling theorem. This implies that an infinite number of signal samples must be

used in the convolution sum, because an abrupt step at the beginning or end of the sampled

signal causes some signal frequency content to be outside of the required band-limit [33].

Windowing the sinc function is essentially the solution to the first requirement. Simply

cutting the sequence down to a desired length equals the multiplication by a rectangular

window. This causes significant spectral leakage and a wide transition band. Using a more

suitable window function is preferred.

Alternatively, the filter may be approximated using any filter design method. Because of

the simple characteristic of the ideal interpolation filter, an approximation is easy to design

using any filter design software, once a few requirements are identified.

4.2 Cascaded interpolation filter

4.2.1 Requirements in a DSM system

Before designing the interpolation filter it is necessary to identify the requirements for it

to work as intended. Two of the requirements may be stated precisely: The interpolation

factor is equal to the OSR of the modulator and the phase response of the filter must be

49

4 Interpolation

0 0.25 0.5 0.75 1
−60

−50

−40

−30

−20

−10

0

Normalized frequency (0 → π)

M
ag

ni
tu

de
 (

dB
)

Input spectrum
Modulated spectrum

Figure 4.6: Noise frequencies above signal bandwidth are masked after modulation.

linear in the passband to avoid any signal distortion. This is guaranteed simply by using

only FIR filters and CIC filters in the design.

Most requirements are not precisely stated. These are left as trade-offs between required

quality and filter complexity.

Order

A crude estimate of digital filter complexity and hardware requirements is its order. In the

general case, order refers to the number of delay elements in the filter implementation. For

FIR filters, this also corresponds to the number of coefficients or hardware multiplications.

As will be seen later this is not quite true, as it is possible to take measures to reduce

complexity independently of order. For now the order will work as an estimate of the

required hardware area. It should be kept as low as possible to reduce the overall power

dissipation.

Passband

A good interpolation filter should have as flat a passband response as possible. This

conserves the original signal and avoids frequency-dependent attenuation as shown earlier

in this chapter.

Stop band

The low normalized cut-off frequency leaves a large frequency region to be attenuated. The

exact frequency characteristic in the stop band is not important, as long as it is sufficiently

50

4.2 Cascaded interpolation filter

2 FIR CIC4

Figure 4.7: Two stage interpolation filter reduces overall complexity.

damped. As the filter is to be followed by a noise-shaping modulator, the stop band allows

for signal aliasing at a level equal to or lower in power than the out-of-band noise level.

These unwanted frequency components will be hidden in the shaped quantization noise

after modulation. An example is shown in figure 4.6. This shows an input signal containing

band-limited noise. After modulation, the noise does not affect the signal quality in the

passband compared to modulating the signal without added noise (not shown). This quick

experiment also indicates that having a certain amount of noise in the stop band actually

decreases the amount of idle tones in the modulated signal.

In other words, the stop band attenuation needs to be highest right above the signal

band limit fN . At this point, the attenuation must be high enough to reduce unwanted

signal power below the expected noise floor of the modulator. The predictions are shown

in section 3.2 to be 30− 35dB.

4.2.2 Multi stage filtering

A problem with the narrow pass-band is that it requires a high filter order. The multi rate

nature of the filter enables a solution using multiple stages. Digital filters may be cascaded

in order to take advantage of changing filter requirements at different sampling rates. The

interpolation may be split into steps as shown in figure 4.7. The requirements of the first

step is the same as the overall filter requirements. However, by reducing the upsampling

ratio prior to the filter to a factor of two instead of the full interpolation factor of eight,

the cut off frequency of the first step is moved to π/2 instead of π/8. This significantly

lowers the required order of the filter.

A simple comparison using filter design software shows the difference: Two low pass

FIR filters with the same requirements, but cut-off frequencies at π/2 and π/8, results in

minimum orders of 28 and 114 respectively. The reduction in complexity is proportional

with reduction in cut-off frequency.

In addition to the complexity savings, using a multi stage implementation also lowers the

overall power dissipation due to clock rate. By splitting into steps, the most complex filter

will be operating at a rate of two times the original sampling rate instead of the full OSR.

This reduces dynamic power consumption proportionally to the clock rate reduction. On

top of this comes a reduction in static power consumption due to a lower overall circuit

complexity.

Later stages have eased demands and may be realized using simpler filters. This allows

51

4 Interpolation

the use of different classes of filters with other benefits. In particular this enables the use

of a FIR filter at the crucial first stage, and later stages may be implemented using more

hardware efficient filters such as the sinc-filter or CIC-filter.

The frequency response of a cascade of filters is the product of each individual filter

response. When filter steps are operating at different rates, the frequency responses must

be normalized to the highest rate before multiplication.

4.3 Step 1: Finite Impulse Response (FIR) filter

Figure 4.8: Upsampling FIR filter. Generally requires one register and one gain step per

filter order.

The low change in sampling rates for the interpolation filter limits the number of choices

concerning the multi stage composition. The first step of the interpolation filter should be

an upsampling by two, followed by a FIR-filter with a reasonably sharp cut-off. The filter

is to reduce aliases caused by the first upsampling.

The choice of a FIR filter is somewhat costly. In its general form it requires one mul-

tiplication, one summation and one storage element per added filter order. This requires

a certain amount of hardware area. Careful design of the filter function may reduce this

substantially, however.

4.3.1 Half-band filter

By letting the passband and the stop band have an equal bandwidth centered around π/2,

we may use a class of filters known as half-band filters. These are ordinary FIR filters with

every other coefficient set equal to zero, except for the middle coefficient. The necessary

multiplications and additions are reduced by a factor of two.

The basis behind the savings may be seen from the ideal discrete interpolation filter given

in equation 4.6. For an interpolation factor of I = 2, all even terms with the exception of

n = 0 are reduced to zero.

h[n] =
sin nπ

2
nπ
2

=

{
0 |n| = 2, 4, 6, 8...

sinc(nπ2) otherwise

52

4.3 Step 1: Finite Impulse Response (FIR) filter

0 0.25 0.5 0.75 1
−60

−40

−20

0

20

Normalized frequency (0 → π)

M
ag

ni
tu

de
 (

dB
)

0 0.25 0.5
3

4

5

6

Figure 4.9: Fir half-band interpolating filter of order 18. Original bandwidth indicated as

dashed line. Inset: Passband ripples are ±0.1dB.

By applying a window function to this infinite filter response results in a realizable filter

using about one half the number of adders and multipliers.

The windowing method does not produce the optimal filter response. Instead calculations

are done with filter design software using the more complex Remez algorithm to get an

equiripple filter with a sharper transition than if the window method had been used [24]. The

stop band attenuation needs to be 40dB for the first step filter requirements to be satisfied.

The transition band is set from 0.4π to 0.6π and results in a filter that may be realized using

an order of 18. This requires only 11 coefficients in the implementation. A low hardware

complexity is considered more important to the result than a high performance filter. The

resulting filter response is displayed in figure 4.9. All coefficients are implemented using

hardware-efficient quantization of values, as discussed in section 6.1.5.

As seen from the detail in figure 4.9, the equiripple method results in equally large ripples

in the pass band as in the stop band. This means that frequency dependent variations of

up to −40dB = 0.01 will occur in the filtered signal. For the signal amplitude of 512 steps,

this results in an expected magnification or attenuation of ±5.

4.3.2 Structural improvements

Efficient implementation of FIR filters is a huge field of research. FIR filters are highly

flexible and simple to design for linear phase response and guaranteed stability, making

them suitable for a wide variety of applications. The draw-back is a very high number of

calculations, hence the potentially large gains in using specialized and reduced structures.

Only a few such methods are used in the chip implementation of the FIR filter. A few

others have been considered.

53

4 Interpolation

Figure 4.10: Suggested structural improvement. Single calculation of symmetric coeffi-

cients reduces the number of gain steps from 11 to 6.

Symmetric filter coefficients

For filters with a symmetric set of coefficients, simplifications are possible by restructuring

so that equal coefficients are only calculated once. This makes the structure somewhat

more complicated, but removes one half of the multiplications [25]. If this method is used,

the half band filter is possible to implement using 6 multipliers, 10 adders and 18 registers.

Figure 4.10 shows how this may be done for the transpose form of FIR filter. The result is

a somewhat more complex way of interconnecting signals. This is ordinarily a smaller issue

than a large number of cells, and has no impact on consumed power.

4.4 Step 2: Cascaded Integrator Comb (CIC) filters

CIC filters are a class of efficient filters implementing the simple sinc-in-frequency filters

discussed under section 4. They are developed with the intent of reducing the number of

high frequency arithmetic operations in a multi rate system. A thorough analysis of benefits

and limitations is given by Hogenauer [13].

Their main strength is simplicity and a resulting low hardware demand. Either interpo-

lation or decimation may be performed, but the filtering functions available to these filters

are limited to the form

H(z) =
(RM−1∑
k=0

z−k
)N

(4.8)

where R, M and N are the only available parameters. The above function is referenced to

the high sample rate of the filter and shows how the CIC filter realizes the same function

as a cascade of N equal FIR filter functions using only unity coefficients.

CIC filters may be considered specialized FIR filters where several measures have been

taken to reduce their hardware needs. Multiplications are removed by restricting all filter

coefficients to unity. Realization of a unity coefficient requires no operation at all. Secondly,

54

4.4 Step 2: Cascaded Integrator Comb (CIC) filters

(a) Interpolating filter

(b) Decimating filter

Figure 4.11: Cascaded Integrator Comb (CIC) filters of third order

the up- or downsampling step is moved to the center of the filter, switching places with the

comb filter section. This results in a reduction of necessary register space by a factor equal

to the rate change R. This may be explained by what is known as the noble identities. In

terms of upsampling, the identify may be stated as

UR{X(z)}H(zR) = UR{H(z)X(z)} (4.9)

where UR is the operation of upsampling by R. By placing the upsampling operation after

the comb filter section, the comb filter step functions are simplified from H(zR) = 1−z−RM
to H(z) = 1 − z−M , thus saving much register space. Both the identity and the savings

are similar for the downsampling filter.

One further benefit of this filter is that is is built using only two basic elements: Ac-

cumulators consisting of a single delay and a feedback adder, and differentiators using M

delay elements and a feed-forward subtraction. The resulting regular structure is simple to

implement using a hierarchical build-up. Both basic elements are built using registers and

adders, and these may in turn be put together according to the number of bits and number

of stages. All steps are made equal as opposed to a general FIR filter where coefficients

differ. The basic structures of both the interpolating and the decimating CIC filters are

shown in 4.11a and 4.11b.

4.4.1 Filter parameters

With only three available parameters, the filter class does not allow for much control over

the filter function.

Order N

The CIC filter order decides the number of cascaded sections in the implementation. For

a unity differential delay, the order directly corresponds with the order used by the simple

55

4 Interpolation

interpolation FIR filters discussed under section 4. The frequency responses of the first

three orders of CIC filters may be seen in figure 4.3 on page 46, again referenced to the

high sampling rate.

An increase in order is done by simply adding one comb filter section and one integrator

section to each side of the filter. Due to the bit growth mentioned earlier, the hardware

cost of adding an order grows exponentially as each added section is larger in width than

the last.

Differential delay M

The parameter specifies the number of delay steps in the comb filter sections. Increasing

this will increase the number of zeros in the transfer function as shown in figure 4.12.

Increasing the number of zeros has a small effect on the overall attenuation of the filter,

but also a slightly lower cost than adding an order. It requires only one added register

instead of the two registers and two adders of an increased order.

Introducing zeros may seem useful in increasing the overall stop band attenuation. How-

ever, the placement of zeros for M = 1 is already near optimal when considering the pass

bands from the first filter step as shown in figure 4.12a. Any additional zeros will be po-

sitioned within the stop bands and contribute little to the final response. This effect is

even more pronounced when preceding filter steps result in narrower passbands. Zeros also

cause the pass band to drop significantly faster than when increasing the order, such that

all in all the differential delay parameter is of little use in most cases. A single step delay

is the best choice for this purpose.

Rate change R

The up or down conversion rate for the filter is often decided by its application, and is not

entirely free to be changed. It is still useful to look at the effects of this parameter, as

it is important in determining the optimal composition of a multi stage filter as well as in

understanding the effect of the CIC filters.

The effect on the filter response may be seen from equation 4.8 to be the same as

the differential delay parameter. The rate change factor does not directly affect the filter

composition and no change to the filter structure is needed to accommodate a different R.

As seen in section 4.4.2, the necessary bit widths are largely dependent on the rate factor.

Increasing the rate change factor for the filter adds zeros to the transfer function in the

same way as for the differential delay.

One interesting result of this is that the filter may be designed for use with different

rates. The filtering function changes with the rate change factor, as opposed to other

digital filters where the response is statically related to the sampling rate. This means that

the same block of hardware may be used to interpolate for a varying rate change factor.

56

4.4 Step 2: Cascaded Integrator Comb (CIC) filters

0 0.25 0.5 0.75 1
−80

−60

−40

−20

0

20

M
ag

ni
tu

de
 (

dB
)

Normalized frequency (0 → π)

CIC filter
FIR passbands

(a) M = 1

0 0.25 0.5 0.75 1
−80

−60

−40

−20

0

20

M
ag

ni
tu

de
 (

dB
)

Normalized frequency (0 → π)

CIC filter
FIR passbands

(b) M = 2

0 0.25 0.5 0.75 1
−80

−60

−40

−20

0

20

M
ag

ni
tu

de
 (

dB
)

Normalized frequency (0 → π)

CIC filter
FIR passbands

(c) M = 3

Figure 4.12: Various differential delays in 3.order CIC filter. Zeros are added outside the

passbands of the preceding filter step.

57

4 Interpolation

4.4.2 Bit growth in CIC filters

One difficulty using CIC filters is the growth in word size throughout the filter. This leads to

some reduction in the efficiency of the CIC filters, in the sense that the required hardware

complexity does not grow linearly with an increase in the filter order. The reason is that

higher orders requires a larger number of bits per step than lower orders do.

Calculations of step sizes are shown in Hogenauer’s original paper [13].

Interpolation filters

The filter gain of each step may be found from Hogenauer’s formula.

Gi =

{
2i i = 1, 2, ..., N
22N−i (RM)i−N

R i = N + 1, N + 2, ..., 2N
(4.10)

The word size increase is then found by

Wi = log2 Gi

As opposed to the decimation filters, a shortening of word lengths is not possible for

interpolation filters until after the last integrator step. The reason is that a small truncation

error introduced to the integrators will grow without bounds and cause the filter to become

unstable.

Decimation filters

For decimation filters the calculations are simpler. The total filter gain is

G = (RM)N (4.11)

The register size increase is then given by

W = log2 G

Hogenauer shows how this is the size of each step of the decimation filter, and how it

might be permissible to reduce the register sizes by truncation of one or more of the LSBs

in such a way that the introduced error does not affect the output of the filter [13]. This is

not implemented in the CIC decimation filter and is left as a potential improvement. The

method reduces total hardware size without impacting much on the filtering quality.

4.5 Simulations

Filters are simulated using the same setup as for the DSM shown in figure 3.11 on page 37.

58

4.5 Simulations

0 0.25 0.5 0.75 1
−80

−60

−40

−20

0

20

M
ag

ni
tu

de
 (

dB
)

Normalized frequency (0 → π)

0 1/8
−20

−10

0

10

Figure 4.13: Cascaded interpolation filter response. Calculated from transfer functions.

Inset: Passband response has 10dB attenuation close to the bandwidth.

0 0.25 0.5 0.75 1
−100

−80

−60

−40

−20

0

S
x’(ω

)
(d

B
F

S
/N

B
W

)

Normalized frequency (0 → π)

30.0 dB

Figure 4.14: PSD for simulated FIR half-band filter. Filtered and upsampled by a factor 2.

Nyquist rate signal band indicated by dashed line.

59

4 Interpolation

0 0.25 0.5 0.75 1
−100

−80

−60

−40

−20

0

S
x’(ω

)
(d

B
F

S
/N

B
W

)

Normalized frequency (0 → π)

29.9 dB

double coefficients
quantized coefficients

Figure 4.15: PSD of both modelled FIR interpolating filters, showing response to white

noise input signal. Nyquist frequency fN/2 indicated by dashed line.

4.5.1 FIR Half-band filter

The FIR half-band filter is simulated in Simulink. The effect of the upsampling by two is

shown in figure 4.14. Input sines are given arbitrary frequencies, resulting in a difference in

alias attenuation level due to the frequency dependence.

The filter is modelled both using full-precision multiplications and quantized coefficients.

For the full-precision filter, the coefficients are represented using double length floating

point numbers native to MATLAB. The quantized filter uses coefficients represented by a

sum of two bit-shift operations, as detailed in section 6.1.5. The effect of the quantization

on the filter response is a reduction of stop band attenuation. By characterizing the filter

using a flat white noise input, shown in figure 4.15, the reduction is seen to be about

10dB. The full-precision filter shows a stop band attenuation of 40dB, as expected from

the filter design software. The quantization of coefficients decreases this to about 30dB.

Both filters show a pass-band width of about 0.2π, normalized to the upsampled rate.

4.5.2 CIC Interpolation filter

The CIC part of the interpolation filter is modelled in Simulink to resemble the circuit

implementation. This filter is cascaded with the FIR filter, hence the upsampling ratio of

this step is set to 4. Figure 4.16 shows how the upsampling results in attenuated images in

the output spectrum. These are not lowered by more than about 20dB for this input. This

illustrates the need for a sharper filter prior to the CIC filter. The lack of a steep transition

band is seen clearer in figure 4.17. This figure also shows the level of attenuation for all

image frequencies.

60

4.5 Simulations

0 0.25 0.5 0.75 1
−100

−80

−60

−40

−20

0

S
x’(ω

)
(d

B
F

S
/N

B
W

)

Normalized frequency (0 → π)

Figure 4.16: PSD of simulated CIC interpolation. Input is filtered and upsampled by 4.

Low rate signal band indicated by dashed line.

0 0.25 0.5 0.75 1
−100

−80

−60

−40

−20

0

S
x’(ω

)
(d

B
F

S
/N

B
W

)

Normalized frequency (0 → π)

Figure 4.17: PSD of simulated CIC interpolation. Response to white noise input signal.

Nyquist frequency fN/2 indicated by dashed line.

61

4 Interpolation

0 0.25 0.5 0.75 1
−100

−80

−60

−40

−20

0

S
x’(ω

)
(d

B
F

S
/N

B
W

)

Normalized frequency (0 → π)

31.9 dB

Figure 4.18: Cascaded filter response using white noise input. Cascade of quantized FIR

filter and finite precision CIC filter.

4.5.3 Cascaded interpolation filter

Simulation results of the FIR filter model followed by the CIC interpolator is shown in

figure 4.18. Results are according to prediction from the transfer function in figure 4.13.

The overall reduction due to the FIR filter coefficient quantization is measured to 35dB−
31.9dB = 3.1dB.

4.5.4 Interpolation and DSM

Figure 4.19 on the next page shows output by the full modelled interpolation filter after

modulation by the DSM. Output signal quality is according to the expectations from

the DSM output using an ideal sinusoid input in figure 3.12. It should be noted that

resulting SNR is only a single measure corresponding to a single input signal. A more

thorough investigation using this setup have been given in 3.4. Experimenting with different

frequencies yields somewhat different behaviour than shown in the figure. Results from the

simulations on the modulator, using a full-resolution input signal shows an output SNR of

31.2dB. This suggests that the interpolation filter reduces the bitstream signal quality by

an estimated 2− 4dB below the potential of the modulator.

62

4.5 Simulations

0.01 0.1 1
−50

−40

−30

−20

−10

0

S
x’(ω

)
(d

B
F

S
/N

B
W

)

Normalized frequency (0 → π)

SNR=29.7 dB

Figure 4.19: Modulation of the signal after interpolation by modelled filter.

63

4 Interpolation

64

5 Decimation

Decimation filter design is related to the design of an interpolation filter. Reverse conversion

from single bit DSM to multi-bit PCM, is somewhat simpler and requires only a digital

decimation filter as illustrated in figure 5.1. The purpose of the filter is dual; The bitstream

is downsampled to the Nyquist rate while expanded to multi-bit PCM words. For this reason

the decimation filter is sometimes referred to as a decoder in a Delta Sigma context.

The chapter contains a short introduction to decimation filters in general, before moving

to a discussion of decimation filters in a Delta Sigma system in section 5.2. The im-

plemented decimation filter is a third order CIC filter, as presented in section 4.4. The

decimation filter is designed for the general case of a bitstream signal processing system.

As a result of the cross-correlation operation, some special considerations apply to the dec-

imation. These are discussed in section 5.2.1. The chapter ends by presenting simulation

results of the filter.

5.1 Ideal decimation

As with interpolation, the ideal decimation filter is a lowpass brick-wall filter. This filter

completely removes all frequencies above the new Nyquist frequency so that no aliasing

errors occur. This means that unless the original signal is strictly band-limited to the new

Nyquist frequency, information content is lost even for an ideal decimation.

A practical lowpass filter does not fully remove the folding frequencies, but attenuates

them to an acceptable level. The specifications of the filter is highly dependent on the

required signal quality and the original signal spectrum. Decimation is usually not done

unless there is some assumption of the original frequency content. If the signal is known to

be band limited, requirements of the filter stop band are lowered as there is no high power

content to be removed.

Nyquist rate
PCM

Oversampled
bitstream Decimation

filter

Figure 5.1: Downsampling bitstream to Nyquist rate PCM.

65

5 Decimation

0 0.25 0.5 0.75 1
−60

−40

−20

0

20

Normalized frequency (0 → π)

M
ag

ni
tu

de
 (

dB
)

First order
Second order
Third order
NTF

Figure 5.2: Second order Noise Transfer Function (NTF) multiplied by CIC filter functions.

Equivalent filter response before downsampling is shown.

As opposed to interpolation, where the signal representation is expanded, representa-

tion after decimation is compressed in time. Fewer samples per time results in a lower

information capacity per time in the resulting signal representation.

5.1.1 Aliasing

The need for filtering before downsampling is somewhat easier to see than for interpolation.

The Nyquist theorem states that at least two samples per period is needed to represent a

sinusoid. Downsampling a signal is equivalent to under-sampling high frequency parts of

the signal. When a signal is resampled at a rate that does not satisfy the Nyquist criterion,

it will only be re-creatable as an alias frequency within the Nyquist band. From a frequency

domain perspective, the effect may be described as a folding of frequencies about the new

Nyquist frequency fN/2 and into the new signal band.

5.2 Decimation in a Delta Sigma system

The decimation filter in a Delta Sigma coded system plays a double part. Its purpose is to

downsample the signal to the Nyquist rate while filtering away quantization noise. At the

same time the decimation filter increases the bit width of the signal to binary coded words.

A few special considerations must be taken.

66

5.2 Decimation in a Delta Sigma system

Noise level attenuation

The filter must have a stop band attenuation high enough to successfully attenuate the

quantization noise of the modulator below the noise floor of the signal band. The noise

spectrum of a modulated signal is not flat, but has a frequency characteristic dependent

on the DSM transfer function used to modulate the signal. This eases the requirements

on the transition band of the filter. The transition band needs to decrease at a rate that

matches the steepness of the noise shaping. For the single loop modulators described in

section 3.1, this slope is shown to be 20dB per decade for each modulator order. Figure 5.2

shows the NTF of a second order modulator, filtered by CIC filters of the first three orders.

The response is shown before downsampling to illustrate the noise power before folding

into the signal band. A third order filter must be used to avoid increasing the in-band noise

floor after folding.

Word size increase

To increase the number of bits to the desired output word size, the filter must be of a

sufficiently high order. Using a very simple filter function may limit the output dynamic

range of the signal because the bit width is not increased enough to fully represent the

signal resolution.

Using a single CIC filter for decimation of a one bit signal at a low oversampling ratio

may result in too low bit growth to increase the output resolution to the desired level.

Using equation 4.11 for OSR = 8 and M = 1 shows that the bit-growth is 3, 6 and 9 for

the first three filter orders. With the expected modulator ENOB of 6.4, at least a second

order filter is needed to output words wide enough to avoid a limitation in resolution. In the

general case, the modulator ENOB grows with an increase in OSR at a slower rate than

the CIC filter bit-growth per rate factor R. In other words, this is not a practical problem

as long as the above frequency response demands of the filter are satisfied.

5.2.1 Decimation of cross-correlated signal

In the implemented system, the decimation filter works on the output from the cross-

correlation block. This signal processing block increases the bit-width from a single bit

to ten bits, while performing a convolution of two signals. To investigate the expected

cross-correlation output spectrum, the algorithm is implemented in MATLAB and tested

on two Delta Sigma coded sinusoid input signals.

Results of the cross correlation between two modulated sequences are shown in figure 5.3

on the following page. Input sinusoids are of the same frequency, making the operation the

equivalent of an auto-correlation.The figure shows how the shape of the noise is preserved

by the operation. Close inspection reveals an increase in SNR from about 25dB to 50dB

after correlation. This is as expected from the auto-correlation, which is commonly used

67

5 Decimation

0 0.25 0.5 0.75 1
−60

−40

−20

0

20

40

Normalized frequency (0 → π)

M
ag

ni
tu

de
 (

dB
)

Cross−correlation
Bitstream

Figure 5.3: Simulated spectrum from bitstream cross-correlator. Input signals are the same

frequency. Noise shaping is preserved.

to detect signals buried in noise [30]. Some increase is also seen in the steepness and

level of out-of-band noise. This slightly alters the premises of the decimation filter, by

increasing its potential effect on the output. A higher stop-band attenuation is required to

fully attenuate all noise components below the in-band noise floor. This is not implemented

on the chip and is left to future improvements.

Bitstream Cross-Correlation implemented in MATLAB

% Computes cross correlation of bitstreams x and template

f u n c t i o n [s] = crosscorr(template , x)

N = l e n g t h (template)

f o r i = 1: l e n g t h (x)-N

% Shift input signal by a single step.

x˙i = x(i:N-1+i)

% Sum of equal valued bits.

s(i) = sum(not(xor (template , x˙i)))

end

5.3 Simulations

A third order CIC decimation filter is modelled in Simulink using the same setup as for the

interpolation filters. The downsampling rate is 8. The filter is modelled and simulated to

resemble the circuit implementation as closely as possible. Input signals are quantized to

10 bit signed integers. The filter is simulated by restricting each step to a wordsize of 19

68

5.3 Simulations

0 0.25 0.5 0.75 1
−60

−50

−40

−30

S
x’(ω

)
(d

B
F

S
/N

B
W

)

Normalized frequency (0 → π)

Figure 5.4: PSD of simulated CIC decimation using white noise signal. Illustrates the large

signal band roll-off using CIC filters.

0 0.25 0.5 0.75 1
−100

−80

−60

−40

−20

0

S
x’(ω

)
(d

B
F

S
/N

B
W

)

Normalized frequency (0 → π)

Figure 5.5: Power spectral density of simulated CIC decimation normalized to the Nyquist

frequency fN/2. Rightmost sinusoid is folded into the signal band and attenuated by 40dB.

69

5 Decimation

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

Time

A
m

pl
itu

de

Decimated
Original

Figure 5.6: Decimated output of modulated signal shows some distortion. SNR ≈ 40dB.

bits, as used in the circuit implementation. The output is bit-shifted down to 10 significant

bits, giving the expected output of the chip decimator.

Figure 5.5 on the previous page shows the estimated PSD of both the input and the

output to the filter. The input signal is a sum of two sines, each with an amplitude of 0.5

times full scale, such that the full range is used without overflow. The lowest frequency

is set well inside the signal band, and should be unaltered by the filter, while the high

frequency component lies outside the signal band, at 0.37π, close to the first maxima in

the stop band. It is clear from the figure how the high frequency signal component folds

into the signal band after downsampling, and is attenuated by about 40dB.

In-band attenuation is shown in 5.4 on the preceding page. Signal frequencies close to

the Nyquist frequency are reduced by 5 − 10dB, or about half the input amplitude. The

simulation is done on the decimation filter, but because this is a result of the CIC filter

characteristic this also applies to the interpolation filter.

70

6 Circuit implementation

The system is implemented in a 90nm CMOS process on a 1mm2 microchip. It is divided

into five main blocks and additional control circuitry:

FIR interpolation filter An order 18 half-band filter with an upsampling rate of two.

CIC interpolation filter A third order CIC filter with unit delays and selectable upsampling

rate of either four or eight.

Delta Sigma modulator A second order delta-sigma modulator performing conversion to

a bitstream representation.

Cross-correlator Partially asynchronous implementation of efficient cross-correlation on

bitstreams.

CIC decimation filter A third order CIC filter with unit delays and a downsampling rate

of eight.

Control circuitry Clock division, signal path multiplexers and serial I/O interface.

The cross-correlator block is designed and tested by Olav Liseth as part of his master

thesis. It utilizes an interesting asynchronous implementation of bubble sorting to count

the number of equal valued bits in two bitstreams [20].

The modulator, three filters and control circuitry is designed as part of this thesis and will

be further detailed here. These blocks may be broken down into a few basic components,

presented in section 6.1. These are designed and simulated separately before combined to

make up the main blocks. Design is done to allow for testing of each individual block or

of the system as a whole. Multiplexers (MUXs) in the signal paths as shown in figure 6.3

enables selection of various combination of paths by configurating the MUX control signals.

Section 6.2 discusses layout of the chip using Cadence and its extension language SKILL.

The last section 6.3 discusses the interface as implemented on chip.

6.1 Basic blocks

All system components are built using a few cells from a standard CMOS library provided

by STMicroelectronics. Transistors are counted from the schematics of these cells and

given in table 6.1 to provide a basis for chip area estimation.

71

6 Circuit implementation

Figure 6.1: Chip layout. Size is 1mm× 1mm including pad frame.

6.1.1 Adders

The adders are implemented as straight forward ripple carry adders. A quick simulation

shows that the ripple delay of such an adder is about 700ps for 8 bits of ripple. Even for a

full CIC accumulator step of up to 19 bits in word size, this is only a few nanoseconds of

delay. Given the low oversampling rate of 8 and a target Nyquist frequency in the audible

range, a full period at the high rate is still over 2.8µs. There is good time to perform

summation.

The bit encoding required by the CIC filters is two’s complement. This does not change

the operation of addition, but subtraction must be handled in a certain way. Generally, an

adder circuit may implement both addition and subtraction by using control logic to make

72

6.1 Basic blocks

Figure 6.2: Micro photography of 1mm × 1mm chip die. Only the top power lines are

visible.

Function Number of transistors Cell name

Full adder 28 FA1SVTX

Flip flop /w clear 32 FD2QSVTX

Flip flop /w clear, invert 32 FD2QNSVTX

Inverter 2 IVSVTX

Table 6.1: Standard cells and required number of transistors used in the main system

components.

the choice between the two. All the mathematical operations in the system are used in

implementing non-changing filtering functions and are constant. It is convenient to use

blocks performing only addition or subtraction thereby eliminating extra logic needed to

select between them. A two’s complement subtractor is made by inverting all input bits of

the number to be subtracted, forming the one’s complement. Adding a value of one forms

the two’s complement and is done simply by hard wiring the carry-in port of the subtractor

to logic one. The two numbers may then be added as normal.

6.1.2 Registers

The registers in the system needs to be non-transparent. The reason being that both

the CIC filters and the DSM contain feed-back loops of registers and adders. Transparent

73

6 Circuit implementation

External

bitstream

Cross-

Correlator

FIR

CIC

Decimator

CIC

Interpolator

DSM

SPI in

SPI in

SPI out

DSM

out
10 bits

10 bits

1 bit

1 bit

Figure 6.3: Schematic view of system. Only main signal paths are shown.

latches would cause these to continuously accumulate incorrect transition values. Registers

are implemented as rows of flip-flop circuits, changing on a rising clock edge. For simplicity,

the same registers are used in all blocks, although it may be possible to use more effective

latches in places without feedback loops. No further analysis is done on whether flip-flop

or latch registers are more power-efficient.

Global clear signal

Another point of consideration when going from high level simulations to a circuit imple-

mentation is the assumption of a zero initial value. On power-up, hardware registers may

contain some random value. When registers are part of a feedback loop as in the CIC

filters, this value accumulates on each period of the clock, resulting in an increasingly large

error in the output of the filters. This is solved using a global clear signal that resets all

registers to a zero initial value.

The problem does not exist in places where the registers are not a part of a feedback

loop. Only the first value in each register will be wrong, and correct values will propagate

from the input through the registers. Refer to the schematics for CIC filters (Fig. 4.4)

and FIR filters (Fig. 4.8) for the difference between registers in a loop and not in a loop,

respectively.

The global clear signal is perhaps not the optimal solution; Automatic initialization of

problem registers at power-up would have simplified the measurement process somewhat

74

6.1 Basic blocks

D Q DQ

clk_lo clk_hi

D Q

clk_lo

D Q

clk_lo

DQ

clk_hi

DQ

clk_hi

(a) Upsampling by zero padding.

D Q

clk_lo

D Q

clk_lo

D Q

clk_lo

DQ

clk_hi

DQ

clk_hi

First order CIC equivalent

(b) Hardware efficient upsampling by zero order hold.

Figure 6.4: Equivalency between third order CIC interpolator using zero padding and second

order CIC filter using zero order hold.

by not requiring explicit resetting. For testing purposes however, having all registers cleared

proved useful in detecting the start of correctly calculated output values.

Sample timing in filter structures

Placement of the registers in a filter structure affects the power consumption of the filter.

Digital filters are commonly presented either by its direct form or its transpose form. The

transpose form is chosen for implementation of the FIR filter and is illustrated in figure 4.8.

On a high abstraction level both representations are equal. For a circuit implementation

however, the transpose form avoids congesting all adders in a chain at the output. In terms

of dynamic power, such a chain causes a number of unnecessary transitional calculations

while the signal propagates through to the output.

The transpose form requires only one addition per sample period, and is better suited

for a silicon implementation. The capacitive load on the input is larger, but this is solved

simply by inserting a few buffers.

6.1.3 Upsampling

Upsampling is usually implemented by zero padding the signal by the missing number of

samples. This preserves the spectrum shape after rate change and is the common way of

upsampling in digital signal processing. This may be thought of as a multiplexer switching

between the input word and a number of zero value words. This is used as the upsampling

step in the FIR filter.

75

6 Circuit implementation

(a) Gain symbol (b) Sum of two hard-

wired shift operations

Figure 6.5: Quantized gain steps implemented by bit shift operations.

An alternative upsampler is used in the CIC interpolation filter. Recognizing the first order

CIC filter as having a zero order hold response leads to a simplification of the structure.

Swapping a single filter step for a hold function amounts to the same result. This will

interpolate by copying existing samples at the higher rate, hence operating as a zero order

interpolation as discussed in section 4.1. In combination with a CIC filter, this response is

desired and increases the filter order by one.

Implementation of this upsampling in hardware is also simpler than for zero padded

upsampling, as no extra logic is needed to vary between zero samples and signal samples.

In other words, only a resampling at the high rate is needed. This is illustrated in figure 6.4.

The method is also discussed in [21].

Applying the method to the third order CIC interpolation filter results in an effective

fourth order filter at no added cost. Alternatively the order may have been preserved while

removing the first and smallest integrator step together with the last and largest comb

filter step.

6.1.4 Downsampling

Similar to upsampling, this may be implemented using two registers where one is operating

at the high sample rate and the other at the lower sample rate. Simplifications may be done,

such as removing the high rate register if the signal is already at stable values synchronized

with the high clock rate.

6.1.5 Gain steps

Gain steps are required in the transfer functions of both the DSM and the FIR filter. The

ideal gain step requires a full precision multiplication of the input value by a given constant

value. An estimate of multiplier size is given in [18]. This is a high-speed multiplier

and might not be the optimal solution for use in this system. It provides an estimate of

required multiplier size. For a full ten by ten bits multiplication, the estimate results in

2800 transistors per multiplier unit.

76

6.1 Basic blocks

Coefficient Full value Quantized value Absolute Error

b1 0.0230 2−6 + 2−7 0.000437

b3 −0.0404 −2−5 − 2−7 0.00135

b5 0.07864 2−4 + 2−6 0.000520

b7 −0.161 −2−3 − 2−5 0.00430

b9 0.531 2−1 + 2−5 0.000403

b10 0.844 1− 2−3 0.0311

b11 0.531 2−1 + 2−5 0.000403

b13 −0.161 −2−3 − 2−5 0.00430

b15 0.0786 2−4 + 2−6 0.000520

b17 −0.0404 −2−5 − 2−7 0.00135

b19 0.0230 2−6 + 2−7 0.000437

Table 6.2: Coefficient values of the FIR half-band filter.

Simplifications of these gain steps are possible. Delta Sigma modulators commonly use

single bit feedback and requires gain steps only on the feedback signal. This enables an

implementation of constant gain using multiplexers. The single bit value switches between

the gain factor and zero. The chosen error-feedback DSM architecture uses multi-bit

feedback, and requires more complex circuits for its gain steps.

By sacrificing precision of the filter coefficients, the gain steps may be significantly

simplified. Each coefficient is approximated by a sum consisting of either multiples of two

or divisions by a multiple of two.

bn = 2bn1 + 2bn2

Where b1 and b2 are positive or negative integers. This way, the quantized gain steps are

implementable as a sum of bit shift operations on the input signal as shown in figure 6.5.

While constant bit shift operations are trivial to perform by hard-wiring, each additional

term beyond the first requires an additional adder. In other words, precision is traded for

hardware area. Two ten bit full adders are required per step, resulting in a number of 560

transistors, or 0.2 times that of the estimated multiplier.

All gain steps in both the FIR filter and the DSM are built from one adder and two hard-

wired bit shift operations. As seen from table 6.2, individual quantization errors from this

method are small. A comparative simulation showing the effect of gain step quantization

for the FIR filter may be seen in figure 4.15 on page 60. Although the quantization

reduces filter quality by about 10dB of stop band attenuation, the required number of

circuit elements are significantly lowered from that of a full precision filter.

77

6 Circuit implementation

DQ

A
B

S

CoCi

CD clk

Figure 6.6: Serial adder circuit. Carry is stored from one bit to the next. Additional logic

is necessary for clearing carry between words.

Optimization of quantized coefficients

The choice of using quantized filter coefficients has been done without extensive investi-

gation of its effects. Later simulations have shown that FIR filter stop band attenuation

is reduced by about 10dB from the desired filter specifications. A better solution may

have been found by looking further into the trade-offs between multiplier complexity and

additional filter coefficients.

Secondly, the calculation of coefficients is done manually by rounding the full precision

values to the nearest sum of powers-of-two. This method is found to be commonly used,

and forms the basis of a more efficient method involving translation into Canonical Signed

Digit (CSD) coefficients [34, 10, 12]. Software is also available for calculating optimized

filter coefficients while taking this quantization method into account [24]. Using such

software may result in better overall filter characteristics than the plain rounding used here

6.1.6 Serial arithmetic

A suggested alternative implementation of registers and adders is by serial arithmetic.

Although the serial interface to the chip has been a result of the large number of pads

needed for test functions, it has also lead to considering an interesting alternative solution.

The parallelization of the PCM signal between the input and output serial form and the

modulated serial form seems somewhat unnecessary. Although parallel words are quite

intuitive and easy to work with, there may be something to gain in terms of simplicity

and area by maintaining the input signal in its serial form. Serial arithmetic is possible by

working directly on the serial PCM signal.

As the design procedure is similar for all three filters and the DSM encoder, it is enough

to target any one of them when considering the trade-offs in using serial approach.

78

6.1 Basic blocks

Serial registers

The use of a serial approach to arithmetic operations suggests a higher degree of pipelining,

with the ability of starting calculations on a word before the previous step is fully finished.

This is only partially true for digital filter applications, because of the intentional use of

delays in calculations. The sample delay requirements of the filter is the same independently

of a parallel or serial implementation. Hence the minimum number of registers will still,

generally, be given by the filter order multiplied by the word size. Pipelining seems to have

more use in simplifying multiplications [1, 34].

A power estimate for the registers can be made for serial arithmetic. Taking the increased

clock rate into account this results in about ten times that of the parallel arithmetic.

Serial addition

A serial ripple-carry adder is made from a single adder unit and a single bit register storing

the carry signal from one clock period to the next. (Fig.6.6.) The single complicating

element as compared to the parallel implementation is that the word sizes must be kept

track of to clear the carry bit between words. In other words, the clocking scheme still

includes both the input bitrate and the input word rate.

Serial addition requires clocking at the bitrate instead of the word rate. Although number

of adder elements are reduced to one per word instead of one per bit, all elements are

clocked at the faster rate. A parallel implementation of an N bit wide ripple carry adder

requires N full adders at the word rate fN . A serial implementation will instead require one

full adder and one register, both clocked at a rate of NfN . Using a bit width of N = 10,

the estimated dynamic power dissipation for the both adders is

Pser ial ∝ 10fN(28 + 32) = 500fN

Pparal lel ∝ fN(28× 10) = 280fN

Because of the increased clock rate, serial addition does not have much to offer in terms

of dynamic power. However, the gains will be larger if static power is also accounted for

because of the significant reductions in chip area.

Serial shift operations

Shift operations may be implemented serially as an increase or reduction in length of shift

register delay chains. In a long delay chain such as is used in a FIR filter, this offers

the possibility of combining registers used for shift operations with registers already used

by the delay line. This is done by tapping the delay line at points corresponding to the

shift value. An example of this method is used in implementation of an asynchronous bit

serial FIR filter. By this method a total of 481 single bit registers is reduced to 460, a

reduction by less than 5% [28]. This is due to the fact that the main sample delay line

79

6 Circuit implementation

still needs to retain its original length. Compared to the hard wired bit shifting used in the

parallel structure, the result is the same: One additional adder is needed per term in the

coefficients.

In conclusion, the costs seem to be higher than the gains for a serial implementation

of the filter blocks. Serial signal representation may have benefits in higher-end systems

and for smaller scale chip technologies as it addresses problems such as synchronization

of parallel lines, difficult interconnect routing and high static power dissipation. For low

speed systems where dynamic power is dominant, a parallel representation seems to be

more effective.

6.2 Layout using SKILL

Layout of the chip is done using scripts written in SKILL, a Cadence extension language.

The method has proven very useful in generating the large and highly regular structures

that make up the digital filters.

SKILL is an interpreted language based on LISP. To meet half-way with designers and

CAD-engineers, who are commonly more accustomed with C than LISP, the language

provides both C-style and LISP-style syntactic constructs [5]. A few peculiarities still

remain. The two most notable are the way whitespace is used instead of punctuation

and scope handling; all variables are global unless explicitly declared otherwise. These are

obvious sources of much confusion, for someone used to working with C-style languages.

All layout of the system is based around a standard cell library provided by STMicroelec-

tronics. The SKILL scripts builds multi-bit registers and adders from single standard cells,

and connects them to form filter structures.

An interesting side effect of using scripted layout is that the process may be done in

parallel with filter design. Final specifications for filters in the system depends on the total

layout size of the cross-correlator block; Total register length of the correlator decides the

bit-width used for chip interconnections and in filters. Benefits are naturally limited for a

one-man project, but it may have some use when applied to a design team. Using SKILL

makes layout a much more flexible process.

Parametrized CIC filters

Some of the incentive to use an automatic layout procedure is the low number of parameters

and high regularity of the CIC filters. This makes it suitable for layout using functions

taking the R, M and N parameters directly. Listing 6.2 on the facing page outlines the

parametrized function for generating layout for the CIC integrator block. A more complete

example of this function is included in appendix B. The scripts calculate word sizes for each

step from the equations 4.10 and 4.11.

80

6.3 Control and interface

Pseudo code for the SKILL script generating a CIC interpolation filter

procedure (generate˙CIC˙interpolator(num˙bits R M N output˙lib)

f o r (i 1 2*N

wordsizes = cons(bitgrowth˙at˙step(i R M N) wordsizes)

)

f o r e a c h (num˙bits wordsizes

when(step ¡ N generateCstep˙And˙CtoCConnections(num˙bits M))

when(step == N generateCstep˙And˙CtoIConnections(num˙bits M))

when(step ¿ N generateIstep˙And˙ItoIConnections(num˙bits))

)

)

FIR filter layout

The main challenge in creating a layout for the FIR filter is implementation of filter coef-

ficients. This is solved in SKILL by using functions to generate interconnections that are

bit-shifted according to a given parameter.

The structural approach to FIR filter layout also makes for easy generation of the DSM

layout. A high degree of code is reused directly from the FIR filter layout scripts, either by

function calls or small modifications to the code. Due to both experience and code reuse,

the full DSM layout is done in a matter of hours.

Improvements

The SKILL scripts are developed only with the described system in mind. Several layout

design rules have been obeyed using poor programming practices such as global variables

and hard-coded constants. Further work is possible to create generally valid scripts for

generation of filter layout. FIR filters commonly require a large number of filter taps, with

every tap needing some degree of individual layout. Scripting the layout process allows

for fast and simple generation of filters for SoC applications. There are also benefits

in extending this scripting approach to generation of the schematics to be used for LVS

verification and simulation. An example of this is found in [20].

6.3 Control and interface

The interface to the chip is intended to be as simple as possible. All configuration signals, i.e

global clear, mux control signals, and control signals for the cross-correlator, are considered

not time-critical. Each of these are input through a separate pad and are not latched and

not synchronized with the system clock. This requires the measuring equipment or micro-

controller to always keep these nodes driven to the correct level.

81

6 Circuit implementation

6.3.1 Clock division

A system containing several multi rate filters requires some attention to the clock signals.

The clocking scheme is summed up in table 6.3. It is centered around the fastest sample

rate internal to the system fs = OSR × fN . This is the rate of the bitstream and is the

only clock rate used for the correlation block. It provides a basis for the lower rate clocks

required in the interpolation and decimation. A simple counter divides down by four and

eight.

The clock source is provided externally by either the measuring device or a micro-

controller. This clock runs at a rate ten times the internal clock rate and synchronizes

the SPI interface circuits. The global clear signal is necessary to synchronize all clock

signals’ phases before valid measurements may be done.

Clock name Relative rate Usage in circuit

SPI clk 10fs External clock; SPI in/out

clk hi fs Bitstream rate; Cross-correlator, DSM, CIC filters

clk div4 fs/4 FIR and CIC interpolation filters

clk div8 fs/8 Nyquist rate; All filters

Table 6.3: Clock signals used throughout the system.

The clocking scheme is somewhat artificial to provide for testability. The SPI must

be able to transmit full words at the oversampling frequency for individual testing of the

filters and modulator, where PCM samples need transfer at the oversampling rate. In the

imagined event of a fully functional system where testability is no longer as important, the

SPI clock may instead be based on the lowest internal system clock, the Nyquist rate fN . If

SPI word length is set equal to the OSR, the clocking scheme would be further simplified

by allowing bitstream signals to be synchronized directly with the clock source. The power

savings of such a reduction are not very large, as only the small SPI circuits operate at the

fastest rate.

6.3.2 Serial Peripheral Interface Bus (SPI)

Due to the limited number of I/O pads on the chip, the 10-bit input and output signals

are transferred in serial form over two lines, one in each direction. An SPI inspired solution

using shift registers are used on chip. This is a simplified form of an SPI, intended to be

compatible with the SPI interface on a micro-controller. The controller is set up as master

with the chip as the only slave unit. Hence the SPI functionality of being able to switch

between several slave elements is left out to save complexity on chip.

To decrease the probability of bit errors and clocking errors, Schmitt trigger buffers are

used at both the SPI input pin and the SPI clock pin.

82

6.3 Control and interface

D Q D Q D Q D Q

<
1
>

SPI clk

Parallel out

D Q D Q D Q D Q

clk hi

SPI in

<
2
>

<
3
>

<
0
>

Figure 6.7: SPI in registers. Only four bits are shown.

D Q D Q D Q D Q

<
0>

<
1>

<
3>

<
2>

SPI clk

SPI out

Parallel in

Figure 6.8: SPI out register. Only four bits are shown. Muxes are controlled synchronously

with the internal clock rate fs .

SPI input

Each word is input in series to a shift register synchronized with the SPI clock. The shift

register is then sampled in parallel by another register at the highest internal system clock.

This is shown in figure 6.7. No means of error detection or separation between words are

used in the SPI implementation. This means that a single clocking error will inevitably

cause the serial word sequence to become out of synch with the internal system clock,

rendering the system useless until reset by the global clear signal.

SPI output

Parallel sample words are clocked into a shift register at the internal system clock rate fs .

The shift register then outputs words in serial form over the SPI output line synchronized

with the SPI clock as shown in figure 6.8. Multiplexers connect the parallel input to the

register for the duration of one SPI clock period at the beginning of each system clock

cycle.

Synchronization is a potential problem in this block as well. There is no form of separation

83

6 Circuit implementation

between words in the output bit sequence, and it is left to the measurement device to split

the sequence back into words. The only way of synchronizing the system after an error is

to reset all registers, including the clock division circuits, using the global clear signal.

6.3.3 Interconnection and routing

Due to the low target operating frequency of the system, no considerations have been given

to interconnection timing. The lack of output signal buffering beyond minimum transistor

sizes did cause some concern, but no problems.

The overall word size of 10 bits is somewhat difficult to handle during chip input and

readout. Both measurement setups requires software or firmware translation to 8-bit byte

sizes due to this choice. More attention to the available external equipment at an early

stage would likely have resulted in different solutions, using an interface of either 8 or 16

bits in word size.

The optimal solution in terms of power, is to further reduce word sizes within the chip.

Simulated results have shown that the effective resolution of the filters and modulator

blocks are in the range of 5− 7 bits. This implies that further hardware simplifications are

possible by reducing word-sizes in filter steps.

84

7 Chip measurements

The chip is tested using a custom made circuit board described in section 7.1. Two different

measurement setups for digital readout are used, and both are discussed under 7.2. Results

are presented in section 7.3. The DSM and FIR filter circuits performs as intended, while

a design fault in both CIC filters has rendered both useless. This is explained in 7.3.3.

All measurements of the Cross-correlator DSP block is documented by Liseth [20]. Power

measurements are not done, but simulated results and their impact on system evaluation

are discussed in section 1.2

7.1 Printed Circuit Board (PCB)

The Thin Quad Flat Pack (TQFP) packaged chip is mounted on a circuit board for con-

nection of measuring equipment. All logic and signal routing in the system is done on

the chip itself. This reduces the requirements for the card down to distribution of power

supply lines and analog conditioning of signals for input and readout by external equipment.

Voltage level shifts are needed between the 1.0V signal levels of the chip and the 5.0V or

3.3V signal levels of connected measuring equipment. The card also assembles wires into

a 40 pin flat cable for easy handling.

Logic level shifting

Electrical levels of the digital device used for measurements are 0.0V and 5.0V, which

necessitates logic level shifting between the chip and the device. This is solved differently

on the inputs and the outputs to the chip.

Input level shifting is done using a series of passive voltage clamps intended for GTL-

type logic levels. These are able to convert either way, between any two voltage levels from

Device Logic family Vdd VOL VIH

DAQm TTL 5.0V 0.0− 0.35V 1.5− 5.0V

ATMega32 CMOS 2.7− 5.0V 0.0− 0.7V 1.6− 5.5V

Chip CMOS 1.0V 0.0− 0.5V 0.5− 1.0V

Table 7.1: Typical voltage levels for the devices.

85

7 Chip measurements

Figure 7.1: Four layer PCB for measurements. Chip in center, with analog level translators

and capacitors spread out.

1.0 to 5.0 volts, but they are pass-transistor based and does not provide any signal drive.

Chip outputs are not properly buffered for driving a large load. For this reason it seemed

somewhat risky to use the pass-transistor solution on the chip’s outputs.

The output logic levels are translated using an active circuit able to translate to any level

from 1.0V to 3.6V, as decided by two supply voltage levels. The measuring equipment uses

Transistor-Transistor Logic (TTL) logic levels, meaning that a voltage higher than about

1.5V will be regarded as a logic high level. Thus it is not necessary for the level shifter to

be able to drive a signal value to 5.0V. 3.3V is regarded a good margin. This kind of circuit

was also considered for the input level translation, but no version was found having more

than a 4.6V guaranteed maximum input voltage tolerance.

Both logic level shift circuits are chosen to keep the option of replacing the data acqui-

sition device with a 3.3V micro-controller. The voltage clamp inputs are able to translate

between either 1.0V and 5.0V or 1.0V and 3.3V, without any changes to the circuit board.

Power supply

Three regulators are used for voltage supplies to the chip. The on-chip supply nets are

divided in two, to enable current measurements and separate shutdown of the correlator

circuit. Because of the correlator block’s somewhat analog nature, it is considered less The

86

7.2 Measurement setup

correlator supply net is powered by a separate 1.0V static regulator, while the rest of the

chip and the external level shift packages are powered by another. An additional regulator

at 3.3V is used for the output level shifters. All regulators are in turn powered by a 5.0V

supply line and a ground plane connected directly to the data acquisition device.

7.2 Measurement setup

Measurements of the chip are done using two different setups. The simplest solution was

seemingly to use an available Data Acquisition (DAQ) module from National Instruments,

a device intended for multi-channel digital measurements. It turned out to be more com-

plicated than anticipated, so a solution using a micro-controller and a test board is highly

preferred.

Setup 1: National Instruments DAQ

Initial measurements of the chip are done using a DAQ device able to do buffered read

and write on a number of digital lines in parallel. Unfortunately device drivers and soft-

ware support for MATLAB is unavailable. Instead, the device C Application Programming

Interface (API) has been integrated in a Python wrapper script. The script configurates the

device for use with the PCB and chip. Details beyond simple read, write and initialization

functions are hidden in the back-end, allowing for a higher-level interface to the device.

Test signal generation, post-processing and presentation of data are done using the

Python scripting/programming language and its Numpy and SciPy expansions. These

allow handling of large numerical data sets in a fashion inspired by MATLAB.

SPIserialize

The DAQ device does not handle numbers in the bit-serial form, but has good support

for writing multi-bit values in parallel form. The translation is done in software on the

connected computer. The initial implementation in Python proved quite slow, so a Python

extension module is written in C for serializing Numpy data arrays. (Appendix C.) The

compiled module enables fast translation between serial and parallel integers. Functions

convert from 10 bit numbers contained in 16 bit integers native to the computer, to

sequences of 10 single bit values contained in 8 bit words as handled by the DAQ device.

This serialization is necessary to exchange data over the SPI interface to the chip.

Setup 2: STK600 w/ATMega32

The preferred setup is using a micro-controller connected to the PCB. An Atmel STK600

test board with an ATMega32 Micro-controller Unit (MCU) was available for measure-

87

7 Chip measurements

ments. Using this setup requires a much smaller amount of written code, both for the

micro-controller firmware and for the host computer.

The ATMega32 includes an SPI interface in hardware, removing the need for serialization

of values. The interface does not have configurable word sizes, meaning that a firmware

routine is needed for translation between the 10 bit wide samples on chip and the 8 bit bytes

used in the micro-controller SPI unit. A second difficulty is data transmission between the

controller and computer. Neither the STK600 or the ATMega MCU have hardware support

for Universal Serial Bus (USB) data transfer, so the final solution is to transfer across the

serial Universal Synchronous/Asynchronous Receiver/Transmitter (USART) interface.

Olimex header board /w SAM7-256

A third measurement setup using a different MCU is presented by Liseth [20]: Although

requiring an additional routing board between the chip PCB and MCU test board, this is

the preferred solution. The SAM7-256 micro-controller includes a configurable length SPI

interface as well as fast data transmission over USB.

7.3 Results

Chip measurements are presented as spectrograms. These are produced to be comparable

to those from the simulations. The Periodogram method is described in section 3.4.1.

7.3.1 DSM

The modulator is characterized using an oversampled digital input sinusoid of same fre-

quency as in the simulated model. Figure 7.2 shows the power density spectrum calculated

from the output bit stream, and results are very similar to that of the simulated modulator

(Fig 3.12). This is not surprising due to its deterministic nature as a fully digital system.

No deviating behaviour from that of the model is found.

7.3.2 FIR filter

The chip FIR filter response is shown in figure 7.3. The input signal consists of a sum

of two sinusoids of the same frequency and magnitude as used for the simulated models.

After upsampling and filtering, the stop band alias signals are attenuated by about 30dB.

This is the same results as predicted by the simulation shown in figure 4.14. A comparison

of the measured noise signal response (fig. 7.4) to the noise signal response simulated on

the quantized coefficients model (fig. 4.15), reveals no apparent differences. This is not

surprising, as the simulation model takes into account the quantization of coefficients by

using shift operations. The only difference is that the simulation model handles samples

88

7.3 Results

10-2 10-1 100

Normalized frequency (0→ωs)−50−40
−30−20
−100

S
x
(́

ω)(dBFS/N
B
W

)

Figure 7.2: Chip measurement of Delta Sigma Modulator (DSM). Signal bandwidth indi-

cated by dashed line.

0.0 0.2 0.4 0.6 0.8 1.0
Normalized frequency (0→ωs)−100

−80

−60

−40

−20

0

S
x
(́

ω)(dBFS/N
B
W

)

Figure 7.3: Chip measurement of FIR Half-band interpolation filter.

89

7 Chip measurements

0.0 0.2 0.4 0.6 0.8 1.0
Normalized frequency (0→ωs)−100

−80

−60

−40

−20

0

S
x
(́

ω)(dBFS/N
B
W

)

Figure 7.4: Chip measurement of FIR Half-band interpolation filter using white noise input.

Nyquist frequency indicated by dashed line.

using 16 bit precision without truncating to 10 bits at every internal step, possibly resulting

in minor truncation errors throughout the filter.

7.3.3 Faulty CIC filter design

Both CIC filters are tested using simple sinusoids as input. The time domain results

in figures 7.5 and 7.6 show clearly how the filters are not working correctly. By careful

investigation of the graphs, it may be seen how the filters are internally overflowing resulting

in a wrap-around behaviour. This is seen as a change from near maximum to a near

minimum value in a single sample period. The continuous and periodic parts of the output

signal signifies that internal filter states are stable. Due to a design fault, neither of

the CIC filters work as intended in their chip implementation. The problem lies in the

implementation of the resampling step of both filters.

High level filter design

Simulation and design of the filters have been done using a high level approach with MAT-

LAB and Simulink as tools. After design verification in Simulink, only a few circuit level

simulations have been done in the Cadence environment. The analog nature of the Spec-

tre simulator makes simulations on a fully digital circuit very time consuming. Circuit level

simulations revealed errors due to initial states in the integrator registers as mentioned

in 6.1.2. No suitable simulation was set up to reveal problems with resampling steps.

90

7.3 Results

0 20 40 60 80 100 120 140
Time (samples)

−600

−400

−200

0

200

400

600

V
a
lu

e

Figure 7.5: Time domain plot of output from flawed CIC interpolator.

0 20 40 60 80 100 120 140
Time (samples)

−600

−400

−200

0

200

400

600

V
a
lu

e

Figure 7.6: Time domain plot of output from flawed CIC decimator.

91

7 Chip measurements

CI C CI I

(a) Block level schematic obscures actual signal path.

(b) Signal path directly from input to output.

Figure 7.7: CIC abstraction levels. High level approach led to incorrect assumptions of the

sample timing in the filter steps.

Cause

As discussed under section 6.1.3 and 6.1.4, resampling may be simplified in both filters.

Due to the high level approach, this is not done correctly during translation from block

schematic to a circuit level schematic, resulting in the resampling step being completely

left out in both filters. Each comb and integrator step is built separately and parametrized

using SKILL for easy combination into either an integrator or a decimator filter. The

handling on a block level led attention away from the fact that there is a signal path not

separated by a register, through each block. This is illustrated in figure 7.7.

During layout blocks have been incorrectly handled as if they were sample-time separated

by a register at each output. (Fig.7.7a.) With this assumption, both upsampling and

downsampling is done simply by clocking the registers in each filter section at either the

high or low rate. However, as seen in figure 7.7b, there is a signal path through each block

that is not latched by a register. The result is that both the final CIC filter implementations

have signal feed-through from input to output during each sample period. This causes

incorrect behaviour of the filters.

Decimation filter

The high sampling rate integrator sections of the decimator operates as intended. The

differences occur in the low rate comb filter sections. The low rate registers sample at the

low rate, while all adders see an input signal from the accumulators changing at the high

sample rate. This means the adders are working at the high sampling rate, which in turn

causes the filter output to change at the high rate.

Fortunately, internal state of the filter is decided by the registers, which are working

correctly. Under certain circumstances, this means that the first output sample of each

clock period is correctly calculated. Adding a downsampling step at the output will allow

only the correct values to be output, by discarding seven intermediary samples at the output

92

7.3 Results

0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

Time

A
m

pl
itu

de

Decimator output
Downsampled at output

Figure 7.8: Circuit simulation of the decimation filter. Downsampling is done at the output,

showing how every 8 output samples is correctly calculated.

instead of in the middle of the circuit.

This suggests a fix to the problem. A downsampling may be implemented quite simply

in software, either on the micro-controller or in the Python scripts performing readout and

post-processing.

A single requirement is that the two clock rates of the filter are synchronized in such a way

that comb step registers sample at a time when adders output a correct value, and not one

of the seven intermediate incorrect values. This is not the case with the implemented clock

division circuit. For this reason, the software work-around is not possible. This is confirmed

in simulation, by setting the filter up with correctly phased clock signals. Figure 7.8 shows

the output of the decimation filter, together with the output downsampled to the low rate

after filter output.

Interpolation filter

The same reasoning also applies to the interpolation filter. The low rate comb steps of the

filter are unaffected by the missing resample step. The integrator step registers will perform

the upsampling, and if the two clock rates are correctly phased the filter will perform exactly

as intended. This has also been verified from simulations using clock signals synchronized

at the rising clock edges.

93

7 Chip measurements

50 55 60 65 70 75 80 85 90
−30

−20

−10

0

10

20

Time (ns)

P
ow

er
 (

dB
m

)

Power
100MHz clk

Figure 7.9: Simulated power consumption for CIC decimation filter clocked at 100MHz.

Values in dB referenced to 1mW.

7.4 Power simulations

The PCB has not been designed for measurements of power consumption for the chip

as a whole. The correlation part of the chip has a separate supply voltage net to allow

measurements of this part. The same is not done for the filters and DSM. All filter blocks

are instead supplied using a single 1.0V power net. The PCB uses this same power network

to supply all logic level shifter packages, hence making current measurements of the chip

difficult.

This may have been solved differently. Keeping the main chip power network separate

from surrounding packages would have enabled current measurements for the chip as a

whole. This could have been with a jumper, in the same manner as is done for the cross-

correlator power supply line.

Individual measurements of each block would require the ability to shut down individual

blocks in the system, or supplying each block on an individual net. The current implemen-

tation uses neither clock gating nor individual supply nets to facilitate such a shutdown.

Simulation setup

Power consumption is simulated using the Spectre analog environment from Cadence. The

CIC decimator is simulated using a 100MHz clock rate. Although much faster than designed

for, this gives a good view of power dissipation in the adder circuits at each clock pulse.

The resulting waveform is shown in figure 7.9.

As expected from a synchronous circuit, power dissipation is concentrated at each rising

clock pulse. The last clock period in the figure is a rising edge for both the high and the

94

7.4 Power simulations

Circuit Pstatic Ptotal

DSM 1.5µW 1.5µW

FIR filter 7.1µW 7.1µW

CIC decimator 3.7µW 3.7µW

CIC interpolator 2.5µW 2.5µW

Total 15µW 15µW

Cross-correlator 650µW 730µW

(a) Power per block

0 5000 10000 15000
0

2

4

6

8

Number of transistors
P

ow
er

 (µ
W

)
(b) Power vs number of transistors

Table 7.2: Simulated power dissipation for a clock rate fs = 18.8kHz. Dynamic power is

negligible at this rate.

low rate filter clock, thus consuming more power. The difference is not larger due to the

missing downsampling step, causing all adders to work at the high rate.

Power peaks occur at the rate of the clock and have instantaneous values of about 1000

times the static power dissipation. During adder activity, the power lies around 0.1−1.0mW.

The figure also displays some of the signal-dependency of power consumption. Each clock

period result in calculations on different values across the circuit, leading to differences in

consumed power.

Average power over time for the filter at 100MHz is calculated to 0.23mW. From the

graph, static power dissipation is estimated at −24dBm = 4µW.

Static power vs. dynamic power

For comparison with the cross correlation measurements done by Liseth, the main system

blocks are simulated using the same clock rate of 18.8kHz [20]. Input signal is a high

amplitude sinusoid which is assumed to cause a realistic activity level on the input bits.

Both CIC filters are measured with the correct resampling steps inserted. Figure 7.2b

shows simulated power and transistor counts for each of the four filter blocks. The linearity

indicates that the power approximations discussed in section 1.2 are valid for these four

blocks.

Static power is calculated at moments where internal states are stable, while total power

is calculated from average power over several clock periods. As noted from table 7.2a,

the dynamic power dissipation at such a low operating frequency is very small compared

to the static power dissipation. The value is smaller than variations in static power, and

is only estimated to lie around 0.01 − 0.1% of the static power. This result is somewhat

surprising and heavily emphasizes the importance of reduction in hardware area as a means

95

7 Chip measurements

of reducing power consumption for the 90nm implementation.

One important extrapolation of this result is that the cost of increasing the overall clock

rate in the system is small, up to a certain point. Simulations done using a higher system

clock rate of 160kHz still shows static power accounting for more than 95% of the total

power, hence no significant increase from the results at 18.8kHz.

This corresponds with results measured on the cross-correlator block. At 18.8kHz the

cross-correlator is measured to consume 0.74mW, where 0.65mW is due to static leakage

currents. The dependency on operating frequency is higher in this block, due to a higher

internal activity level resulting from each pulse of the clock. As a result, dynamic power

makes up 57% at 150kHz [20].

Serial arithmetic revisited

For applications requiring a low operating frequency, the above simulations have shown

that static power is dominant. This result increases the significance of hardware re-use as

a means for lowering overall power. This is seen by considering the 10 bit serial adder as

discussed earlier in section 6.1.6, while accounting for static power dissipation. Normalized

to the sampling rate, the power estimate may be re-stated as

Ptotal = Pstatic + Pdynamic

Pser ial = (28 + 32)α+ 10(28 + 32)β

Pparal lel = (28× 10)α+ (28× 10)β

where α and β are proportionality constants for static and dynamic power. For an operating

speed no higher than 160kHz, the above simulation results have shown that the ratio of

dynamic power to static power is lower than 0.05. This gives β < 0.05α.

Pser ial = 60α+ 600× 0.05α = 90α

Pparal lel = 280α+ 280× 0.05α = 294α

Resulting in estimated power savings by a factor of 3 for the serial adders, due to the lower

hardware area.

Extending this reasoning to the cross-correlator structure brings to mind a modification

of the initial Figure of Merit (FOM) for estimating power consumption, as presented in

section 2.2 on page 16. For operation in a low dynamic power environment, the frequency

dependency is reduced or even neglected. Hence a reduction of the dependency of the

cross-correlator power consumption on the OSR parameter. This has two significant impli-

cations. First, the advantage of the bitstream cross-correlator over the compared multi-bit

correlation architecture will be larger than the values predicted by figure 2.2 on page 17.

Secondly, a decreased dependency of power on OSR allows for significant savings also for

higher values than OSR = 8. This in turn, allows more freedom and a higher resulting

signal quality of the DSM.

96

8 Conclusion

The thesis has presented an implementation of a single-chip cross-correlator. This is done

by recoding a digital signal into its Delta Sigma bitstream representation using a digital-

to-digital modulator. To facilitate for such a conversion, the signal is interpolated prior to

modulation. After signal processing, a decimation filter downsamples the filter back to a

Nyquist rate representation for readout and post-processing.

A study of the cross-correlator show very promising results with regards to power ef-

ficiency and performance. The main drawback of the cross-correlator is that savings in

power consumption have to be traded with Oversampling Ratio (OSR). Together with the

requirement of a single-bit Delta Sigma code, a low OSR is directly conflicting with encod-

ing of a high quality bitstream signal. Single-bit modulators operating under an OSR as

low as 8 have been found to be limited upwards to about 35dB of SNR. The implemented

modulator performed according to these predictions, resulting in a measured SNR of 31dB.

The complexity of such a modulator is not overwhelming; an implementation in 90nm is

done in 40 × 52µm. Nevertheless, the modulator remains as the single constraint on the

overall signal quality of the system.

As discussed in conclusion of chapter 7, the implemented system may be improved by

consideration of static power dissipation as well as dynamic. For the intended application

fields in detection and processing of real-world processes, static power is shown to be the

main source of power consumption. This is found both from circuit simulations on the

synchronous digital filters and from measured results on the partially asynchronous cross-

correlator [20]. All measures taken to reduce power in the system are concentrated around

dynamic consumption.

A further study is required into the implications of static power in the system. Pre-

liminary results from assuming a neglectable dynamic power dissipation indicate that the

advantage of bitstream cross-correlation over compared binary correlation is significantly

increased. Of particular interest is the relationship between oversampling ratio and static vs.

dynamic power dissipation. Static power domination may be the case for typical ubiquitous

applications, requiring a low operating speed and utilizing a small featured manufacturing

process.

97

8 Conclusion

8.1 Future work

Both Delta Sigma modulation and digital filtering are very large fields of research with a

vast amount of publications presenting effective and specialized methods. Only a few of

these are investigated as part of this work. Many more are left to future improvements.

If principles of bitstream signal processing are to be extended to higher speed systems,

dynamic power is expected to be much larger than in the presented results. An interesting

direction for further exploration is in asynchronous design methods. This is only touched

upon in looking for ways to improve the system power dissipation by thinking in terms of

clock-less design. Benefits of asynchronous design includes closer connection between cell

activity and actual performance, thus saving power in a high speed system. An asynchronous

full adder for dual-rail data-path coding may be implemented with only 34 transistors,

compared to 28 in the cell library used in this project [23] Asynchronous implementation

of DSMs has also been successfully done [9].

Power saving methods on other levels than the algorithmic and architectural have not

been looked into in this thesis. Due to the high static power consumption in the system,

substituting for high threshold transistors may be a good way of reducing overall power

consumption.

Only a single DSP system utilizing bitstream calculations is looked into in this work.

Others are mentioned, but will be left to further investigations.

Another improvement of the system may be found by exploring the way the correlation

template is created. Because of the close connection between cross-correlation and filter-

ing, pre-processing of the correlator template may allow mild compensation filters to be

included directly in the template, hence altering hardware filter requirements.

The SKILL implementation provides a good way to quickly adapt the system to changing

requirements. Future work on the SKILL implementation is possible to not only allow fully

parameterized generation of CIC filters, but also FIR filters. A script for generation of FIR

filter layout masks is of obvious value in many applications.

98

A Paper

The enclosed paper is submitted for the 27th NORCHIP Conference. Acceptance status

is not known at the time of writing.

99

Power efficient Cross-correlation using Bitstreams
Olav E. Liseth, Daniel Mo, Håkon A. Hjortland, Tor Sverre “Bassen” Lande and Dag T. Wisland

Dept. of Informatics, University of Oslo, Norway
Email: olaveli@ifi.uio.no, daniemo@student.matnat.uio.no, haakoh@ifi.uio.no, bassen@ifi.uio.no, dagwis@ifi.uio.no

Abstract—The fundamental operation of cross-correlating sig-
nals is viable in a number of signal processing applications. In
typical pattern-matching applications, cross-correlation is desir-
able. In this paper we present a power efficient implementation
of a time-domain cross-correlator suitable for integration in
CMOS. Bitstream coding of both data and template simplify
multiplication operations. Measured performance of a CMOS
implementation in 90 nm technology is reported.

I. INTRODUCTION

A major trend in microelectronics is integration of spe-
cialized solutions in an increasing number of applications.
The idea of ubiquitous computing is certainly exciting, but at
the same time demanding. Both sensing and controlling real
world processes demand mixed-mode solutions combined with
challenging signal conditioning and processing. The notion
of small, portable, battery-operated systems often organized
in a wireless sensor network (WSN) has initiated significant
research activity. In these applications size is limited and
low-power operation is mandatory for battery operation. The
benefit of adopting specialized silicon systems is evident in
applications like WSN motes [1].

An overall characteristic of these ubiquitous computational
devices is mixed-mode operation. Sensing of external states
is accomplished with analog-to-digital converters (ADCs) and
controlling of external processes requires DACs. A popular
and power-efficient converter architecture is sigma-delta, or
delta-sigma, converters well suited for integration in digital
technology.

A recurring signal processing task in real-world signal
analysis is pattern-matching recovering special features of
some sensed signal. As an example in this work we will use
signal processing for Electrocardiogram (ECG) classification.
Although filter-based solutions have been developed with great
sophistication over the last decades [2], recent publications [3]
indicate that cross-correlation based methods are preferable.
Furthermore, the miniaturization of ECG-monitoring devices
are pursued both in research and in industry [4]. The notion
of heartbeat detectors embedded in the ECG electrode and
configured in a wireless sensor network is tempting and would
enable long-term ECG analysis. Substitution of the quite
clumsy Holter monitors used today would make life easier.

In this work we will show how power-efficient cross cor-
relators are implementable in standard CMOS technology,
exploring bitstream-coded signals. The internal signal repre-
sentation called bitstream is found in sigma-delta converters,
but is usually decimated to Nyquist rate binary coded numbers.
However, some signal processing like filtering using bitstreams

are reported [5], [6], [7], [8]. Another application of bitstreams
is found in the audio coding format named Direct-Stream-
Digital used in SACD, developed by Sony and Philips [9].

The idea of cross-correlation using bitstreams was proposed
in [10] and evaluated for heart rate variability study in [11]. In
this paper we present an implementation of a complete cross-
correlation chip with a binary coded interface.

II. BITSTREAM CROSS-CORRELATOR

A discrete estimate of the cross-correlation of two sequences
is found by the equation:

r(t) =
n−1∑
k=0

y(k)x(t+ k)

The finite, time-variant sequence x(t) of length n is cross-
correlated with a template sequence, y(t), by multiplying each
element of the two sequences over a window of length n and
summing the result. The result, r(t), is a good estimate of
the cross-correlation between the two finite sequences. For
every new sample of the incoming signal another r(t) may
be computed creating another element of a cross-correlation
sequence between the incoming signal and the template.

From a computational perspective we need to do n multipli-
cations and sum the results for each sample of the incoming
signal. We either need n multipliers running in parallel or
to speed up the clock with a factor of n. Then we need to
figure out an efficient summing operation in the simplest form
requiring another n iterations following the multiplications.
No wonder alternative pattern-matching measures are sought
when power is precious.

In this paper we explore the idea proposed in [10] of
implementing cross-correlation by processing bitstreams. By
doing so, quite power efficient single chip heartbeat detectors
embedded in the ECG electrode are feasible.

III. SINGLE-CHIP CROSS-CORRELATOR

To allow for a simple interface to the chip, both input and
output signals are assumed to be Nyquist rate binary encoded.
Conversion to and from oversampled bitstream representation
is done on-chip. Fig. 1 shows how the bitstream is only
necessary internal to the system. However, a Serial Periph-
eral Interface Bus (SPI) is used for interfacing, and on-chip
multiplexers facilitate testing of individual blocks.

A. Bitstream Conversion

The binary-to-bitstream signal conversion is done using a
two step interpolation filter and a sigma-delta modulator. The
interpolation filter upsamples an input signal at the Nyquist
rate by the oversampling ratio required by the modulator. In-
terpolation in several steps is commonly used. This allows for
a combination of an anti-alias filter, with a narrow transition
band, and a more hardware efficient Cascaded Integrator Comb
(CIC) filter [12]. This is a compromise between filter quality
and silicon area, which in turn affects power consumption.

Similarly, a decimation function is required for removing the
high-frequency quantization noise present in bitstream coded
signals, shown as the CIC decimator in Fig. 1.

Using a low oversampling ratio (OSR) when modulating the
bitstream obtains the largest power savings [10]. As a conse-
quence, the possible signal quality of the bitstream is limited.
Compromising between these two considerations, the system
OSR is set to 8. Still the bit sequence may be of significant
length depending on the time-span of the correlation window.
In our test-chip we use a correlation length of 1024 bits.

B. Bitstream Operations

Multiplication between bitstreams has a significant advan-
tage compared to its multibit counterpart and can be carried out
using basic logic gates. The dynamic range of the implemented
modulator is normalized to −1 ≤ x ≤ 1, where x is the
input. The probability that the output of the modulator, X ,
is 1 or 0 is then given by P (X = 1) = (1 + x)/2 or
P (X = 0) = 1 − P (X = 1) = (1 − x)/2. The modulation
of two input signals x and y is regarded as uncorrelated and
results in two bitstreams, X and Y . The XNOR of the two
bitstreams results in:

P (X⊕Y = 1) =P (X = 0) ·P (Y = 0)
+ P (X = 1) ·P (Y = 1)

=
1
2
(1 + xy)

which indicates that operations usually requiring complex
digital circuitry can be done with a simple logic gate when
processing bitstreams. The results from bitstream multiplica-
tions are just a single bit from each multiplier. A summing
operation still remains.

For power efficiency we try to avoid clocks exceeding the
oversampled clock frequency. Knowing the multiplier results
are all single bits, the summing is reduced to counting the
number of ’1’ after multiplications. A novel asynchronous
solution is explored to compute the sum during the same clock
cycle as the multiplication. The counting operation is split in
two operations:

1) Sorting bit sequence from multipliers. The sorting
method used is inspired by the software bubble sort al-
gorithm, but is implemented completely asynchronously.

2) Encoding sorted result as binary number. By interpreting
the sorted bit sequence as a thermometer coded result,
a binary number is encoded.

External

bitstream

Cross-

Correlator

FIR

CIC

Decimator

CIC

Interpolator

DSM

SPI in

SPI in

SPI out

DSM

out
10 bits

10 bits

1 bit

1 bit

Fig. 1. Block schematic showing main signal paths. The multiplexers allow
each block to be tested individually. Only the SPI in and out pins are used
for the full signal path.

The asynchronous operation is achieved using inherent gate
delays explained below.

C. Bitstream Cross-correlation

During setup phase, the binary-to-bitstream converter may
be used or the template may be shifted in directly as a
bitstream coded sequence of up to 1024 bits. Then the in-
coming signal is shifted into the correlation register coded as
a bitstream or converted by the binary-to-bitstream converter.
All bits in the two registers are “multiplied” by XNOR gates
at the start of every clock cycle. The bubble register is loaded
with the results from the XNOR operation after an adequate
delay. Then the “bubbling” is started and the rest of the
clock cycle is reserved for the asynchronous sorting operation
followed by latching of results. During the next clock cycle
the thermometer coded result of the bubbling is converted to
a binary representation in parallel with computation of the
following correlation result.

IV. IMPLEMENTATION

In these dedicated systems, register lengths are hard-coded
by design. Depending on application, correlation window
lengths must be adapted for minimal power consumption. For
easy generation of different cross-correlators we have used
SKILL, a LISP-like CAD system extension language. The
produced SKILL scripts facilitate fast and easy generation of
both schematics and layout of cross-correlators of different
sizes.

A. Bitstream Cross-correlator

The bubble register used for sorting is shown in Fig. 2 and
each element consists of one ordinary RS-latch, one AND
gate and inverters used as delay-elements. The latches are
loaded with the result from the bitstream multiplication in the
beginning of the clock cycle. The bubble sorting is initiated
after a predefined delay for proper settling of the latches.

It is important to notice that the exchange of bits in the
bubble register is local, enabling parallel operation. Basically,

Bubble register

Fig. 2. Asynchronous bubble sorter.

the operation (1, 0) → (0, 1) can be carried out, provided
data is stable. To ensure failsafe operation the actual exchange
operation is delayed using some inverters. In this way all ’1’
are “bubbled” to the right while the ’0’ is “bubbled” to the
left.

The final and stable condition of the bubble register has all
’1’s stacked to the right and all ’0’s to the left. This code is
known as a thermometer code. In fact there is one and only
one (0, 1) sequence in the sorted result, which may be used
for unique binary encoding.

The thermometer code is converted to its binary represen-
tation in the following clock cycle, while the next cross-
correlation result is computed. The thermometer encoded
result is fed to the binary encoder assuming a single (0, 1)
transition. This transition is identified by a row decoder, com-
paring two consecutive values from the thermometer coded
array using an XOR-gate. The selected row pulls down the
correct precharged output lines which encodes the desired
binary result. The output lines are sampled after a predefined
delay and clocked out through the SPI-interface.

B. Data Conditioning

Hiding of bitstream coding is an integral part of the cross-
correlator chip. The following modules are included:

1) Interpolation filter: The anti-aliasing step of the inter-
polation filter is a 20-tap halfband FIR filter following an
upsampling by two. This filter type has every other coefficient
set to zero and is an efficient way to achieve a narrow transition
band around 0.5π. Each tap in the filter is in turn simplified.
Gain steps are quantized such that each are realizable as a sum
of maximum two hardwired bit-shift operations. This removes
the requirements for full multiplications in the filter.

The CIC filter step is of third order and performs an
upsampling by four, resulting in the desired oversampling rate.

2) Sigma-Delta modulator: The modulator has a second
order error feedback structure. This structure uses multibit-bit
feedback and is well suited for digital input. The most impor-
tant design constraint for the modulator is the requirement that
the output is a bitstream. This rules out good modulator types
such as cascaded or MASH architectures giving word streams.
Quality of the modulator is also limited by the low OSR in
the system. For an OSR of 8, modulator orders of two and
more give a maximum expected signal to quantization noise
ratio (SQNR) of 35–40 dB.

Fig. 3. Chip layout designed in STMicroelectronics 90 nm technology, delta-
sigma converter and 1024-bits cross-correlator. Chip size included pads is
1× 1mm

3) Decimation filter: The filter used for decimation is an
ordinary CIC decimation filter of third order with a downsam-
pling ratio of 8. This converts the oversampled output from
the cross-correlation block back to a Nyquist rate signal, while
reducing high frequency noise inherited from the bitstream
representation.

V. MEASUREMENT RESULTS

The chip is measured using a simple microcontroller en-
abling measurements of the different chip modules.

1) Interpolation filter: The frequency response of the cas-
caded interpolation filter is shown in Fig. 4. The response of
the FIR filter step was confirmed by chip measurements, using
both white noise input signals and sinusoidal inputs. Total stop
band attenuation is 35–40 dB, close to expected performance.

2) Sigma-Delta modulator.: The chip modulator was tested
using a full-scale sinusoidal input. Output spectrum is shown
in Fig. 5 and shows the expected SQNR level.

A. System Performance

Here we briefly show the system performance by
component-based ECG-analysis [3].

In Fig. 6 the cross-correlation from the test-chip is shown
together with cross-correlation using the xcorr()-function in
MATLAB. The data used is taken from the QT database [13].
The first QRS-wave from the annotated database is selected as
template and loaded into the template-register as a bitstream.
Then a sequence of three heartbeats are fed to the chip and
the cross-correlated result is decimated and plotted. Just by
inspection the cross-correlation results are promising and very
close to results obtained using “ideal” cross-correlation with
MATLAB. A proper evaluation of the cross-correlation chip
for QRS-detection demands extensive analysis, far beyond the
scope of this paper.

The main computational block doing cross-correlation is
measured to 2.1 mW power consumption when active. With a
clock frequency of 480 kHz and an OSR of 8 this is equivalent

0 0.2 0.4 0.6 0.8 1
−80

−60

−40

−20

0

20

M
a
g
n
it
u
d
e
 (

d
B

)

Normalized frequency (0 → π)

Fig. 4. Frequency response of cascaded interpolation filter. Normalized to
half the oversampling frequency.

0.01 0.1 1
−50

−40

−30

−20

−10

0

S
x
’(

ω
)

(d
B

F
S

/N
B

W
)

Normalized frequency (0 → π)

Fig. 5. Power spectral density of the sigma-delta modulator. Nyquist
frequency indicated by dotted line.

to ≈ 7.7 M multiplications each second at Nyquist rate. In
addition this first chip was a proof-of-concept with far from
optimal layout. We consider these results to be very promising
for low-power, single-chip pattern-recognition.

As indicated in the introduction, cross-correlation is a
generic pattern-matching computational element suited for
several signal processing tasks. The bitstream processing so-
lution presented in this paper aims at low-power operation
at low or moderate signal frequencies. There is a growing
demand for low frequency sensor interfacing where filtering
is required. The proposed cross-correlator chip may also be
used as a programmable filter by time-warping the template
for convolution. The cross-correlator chip is suitable both for
low-frequency operation and as a programmable filter. Many of
these applications are emerging with biomedical applications.

VI. CONCLUSION

In this paper we have presented a novel single-chip cross-
correlator suitable for power-efficient pattern matching. Bit-
stream encoded signals found in sigma-delta converters are
used for efficient multiply-and-sum operations basically sub-
stituting multipliers by simple gates.A novel asynchronous
bubble-register is utilized avoiding increased clock frequency.
The running cross-correlator is implemented in 90 nm technol-
ogy and measured results are provided.We expect these kind

Fig. 6. Bitstream cross-correlation results.

of cross-correlators to be viable in power-limited, low signal
frequency applications like QRS-detection of ECG-signals.

ACKNOWLEDGMENT

The authors would like to thank Dept. of Informatics,
University of Oslo for providing chip fabrication and lab
facilities for this project.

REFERENCES

[1] B. Warneke, M. Last, B. Liebowitz, and K. Pister, “Smart dust: commu-
nicating with a cubic-millimeter computer,” Computer, vol. 34, no. 1,
pp. 44–51, jan 2001.

[2] [Online]. Available: http://www.openecg.org/
[3] T. Last, C. Nugent, and F. Owens, “Multi-component based cross

correlation beat detection in electrocardiogram analysis,” BioMedical
Engineering OnLine, vol. 3, no. 1, p. 26, 2004. [Online]. Available:
http://www.biomedical-engineering-online.com/content/3/1/26

[4] [Online]. Available: http://www.toumaz.com/
[5] P. O’Leary and F. Maloberti, “Bit stream adder for oversampling coded

data,” Electronics Letters, vol. 26, pp. 1708–1709, Sept 1990.
[6] F. Maloberti and P. O’Leary, “Processing of signals in their oversam-

pled delta-sigma domain,” in Circuits and Systems, 1991. Conference
Proceedings, China., 1991 International Conference on, Jun 1991, pp.
438–441 vol.1.

[7] M. F., “Non conventional signal processing by the use of sigma delta
technique: a tutorial introduction,” in Circuits and System, ISCAS ’92.
Proceedings, 1992 IEEE International Symposium on, vol. 6, May 1992,
pp. 2645–2648.

[8] S. Summerfield, S. Kershaw, and M. Sandler, “Sigma-delta bitstream
filtering in vlsi,” in Circuits and Systems, 1994., Proceedings of the
37th Midwest Symposium on, vol. 2, Aug 1994, pp. 1200–1203 vol.2.

[9] E. Janssen and D. Reefman, “Super-audio cd: an introduction,” Signal
Processing Magazine, IEEE, vol. 20, no. 4, pp. 83–90, July 2003.

[10] T. Lande, T. Constandinou, A. Burdett, and C. Toumazou, “Run-
ning cross-correlation using bitstream processing,” Electronics Letters,
vol. 43, no. 22, pp. –, 25 2007.

[11] M. Ho, T. Lande, and C. Toumazou, “Efficient computation of the lf/hf
ratio in heart rate variability analysis based on bitstream filtering,” in
Biomedical Circuits and Systems Conference, Nov 2007, pp. 17–20.

[12] E. B. Hogenauer, “An economical class of digital filters for decima-
tion and interpolation,” Acoustics, Speech, and Signal Processing [see
also IEEE Transactions on Signal Processing], IEEE Transactions on,
vol. 29, no. 2, pp. 155–162, Apr 1981.

[13] P. Laguna, R. Mark, A. Goldberger, and G. Moody, “A database for
the evaluation of algorithms for measurement of qt and other waveform
intervals in the ecg,” Computers in Cardiology, vol. 24, pp. 673–676,
1997.

A Paper

104

B SKILL code excerpt

The following listing is a code example showing the interpolator layout routine written in

SKILL. The total chip layout is done in about 3000 lines of code, generating complete

layout for all filters and the Delta Sigma Modulator (DSM).

CIC.il

; Parameterized function for generation of a CIC interpolator layout.

p r o c e d u r e (generate˙CIC˙interpolator(num˙bits R M N output˙lib)

prog ((dbcv source˙lib cell˙name view˙name xoff handle steps i j val

pitchC pitchI)

;init constants

5 pitchC = 5.32

pitchI = 4.76

xspace = 3.92

source˙lib =”CORE90GPSVT”

cell˙name=”CIC˙interpolator”

10 view˙name=”layout”

; calculate word sizes for each C-step

f o r (i 1 N

steps = cons (num˙bits+i steps)

15);for

i f (M == 1 then ; special case for last C-step when M=1, see Hogenauer

steps = cons (num˙bits + N-1 c d r (steps))

);if

; and for I-steps

20 f o r (i N+1 2*N

; Hogenauer ’s word size formula.

val = (2**(2*N-i))*((R*M)**(i-N))

val = val / R

val = val * N ; My variation of the upsampling.

25 ; calculating ceil(log2(val))

j = 0

w h i l e (val ¿ 2**j

j++

)

30 steps = cons (num˙bits+j steps)

);for

steps = r e v e r s e (steps)

p r i n t f (”Word sizes are: “n”)

f o r e a c h (elm steps

105

B SKILL code excerpt

35 p r i n t f (” %d” elm)

)

p r i n t f (”“nPlease verify word sizes , just to be sure.”)

generate˙adder(output˙lib)

40 generate˙register(output˙lib)

dbcv=dbOpenCellViewByType(output˙lib cell˙name view˙name

”maskLayout” ”w”)

; align at x=0

45 xoff =0.06+3.98*M

i f (mod(M 2) == 0 then xoff = xoff + 0.47)

step=1 ; step counter

; inputs with pins and labels

f o r (i 0 c a r (steps)-2

50 l e t ((net˙name net pin term text)

;input

sprintf(net˙name ”In ¡%d¿” i)

net = dbCreateNet(dbcv net˙name)

term = dbCreateTerm(net nil ”input”)

55 pin=dbCreatePin(net

dbCreateRect(dbcv ’(”M2” ”pin”) l i s t (1.485:1.75+i*pitchC

2.275:1.89+i*pitchC))

)

text = dbCreateTextDisplay(term term ’(”M2” ”pin”) t

1.84:1.82+i*pitchC

”centerRight” ”R0” ”swedish” 0.7 t nil t nil t ”name”)

60 text˜¿parent = pin˜¿fig

);let

);for

f o r e a c h (num˙bits steps

when(step ¡ N

65 ; C-step and C to C type connection

handle = generate˙C(num˙bits pitchC M output˙lib)

dbFlattenInst(dbCreateInst(dbcv handle nil xoff:0 ”R0”) 1

nil)

handle = bus˙connection˙CC(num˙bits pitchC output˙lib)

dbFlattenInst(dbCreateInst(dbcv handle nil xoff:0 ”R0”) 1

nil)

70 handle = bus˙extension˙CC(nth(step steps)-num˙bits pitchC

output˙lib)

u n l e s s (handle == nil

dbFlattenInst(dbCreateInst(dbcv handle nil

xoff:(num˙bits -1)*pitchC ”R0”) 1 nil)

)

i f (step == 1 then

75 gen˙supplies(dbcv pitchC xoff 0 num˙bits ”C” ”L”)

else

106

gen˙supplies(dbcv pitchC xoff 0 num˙bits ”C”)

)

i f (mod(M 2) == 0

80 then

xoff=xoff +4.33+3.98*M ; dist between C-steps

else

xoff=xoff +3.21+4.63*M ; dist between C-steps if even M

)

85)

when(step == N

; C-step and C to I connection

handle = generate˙C(num˙bits pitchC M output˙lib)

dbFlattenInst(dbCreateInst(dbcv handle nil xoff:0 ”R0”) 1

nil)

90 handle = bus˙connection˙CI(num˙bits pitchC pitchI output˙lib)

dbFlattenInst(dbCreateInst(dbcv handle nil xoff:0 ”R0”) 1

nil)

handle = bus˙extension˙II(nth(step steps)-num˙bits pitchI

output˙lib)

u n l e s s (handle == nil

dbFlattenInst(dbCreateInst(dbcv handle nil

xoff +0.60:(num˙bits -1)*pitchI ”R0”) 1 nil)

95)

gen˙supplies(dbcv pitchC xoff 0 num˙bits ”C” ”R”)

xoff=xoff +8.44 ; dist between C and I

)

when(step ¿ N

100 ; I-step

handle = generate˙I(num˙bits pitchI output˙lib)

dbFlattenInst(dbCreateInst(dbcv handle nil xoff:0 ”R0”) 1

nil)

i f (step ¡ 2*N

then

105 ; I to I connection unless last step.

handle = bus˙connection˙II(num˙bits pitchI output˙lib)

dbFlattenInst(dbCreateInst(dbcv handle nil xoff:0 ”R0”) 1

nil)

handle = bus˙extension˙II(nth(step steps)-num˙bits pitchI

output˙lib)

u n l e s s (handle == nil

110 dbFlattenInst(dbCreateInst(dbcv handle nil

xoff:(num˙bits -1)*pitchI ”R0”) 1 nil)

)

i f (step == N+1 then

gen˙supplies(dbcv pitchI xoff 0 num˙bits ”I” ”L”)

else

115 gen˙supplies(dbcv pitchI xoff 0 num˙bits ”I”)

)

else ;last step , make output pins and labels

107

B SKILL code excerpt

f o r (i num˙bits -10 num˙bits -1

l e t ((net˙name net pin term text)

120 ;input

sprintf(net˙name ”Out ¡%d¿” i-num˙bits +10)

net = dbCreateNet(dbcv net˙name)

term = dbCreateTerm(net nil ”output”)

pin=dbCreatePin(net

125 dbCreateRect(dbcv ’(”M2” ”pin”)

l i s t (xoff +1.720:1.55+i*pitchI

xoff +2.23:1.69+i*pitchI))

)

text = dbCreateTextDisplay(term term ’(”M2”

”pin”) t xoff +2:1.62+i*pitchI

130 ”centerLeft” ”R0” ”swedish” 0.7 t nil t nil t

”name”)

text˜¿parent = pin˜¿fig

);let

);for

gen˙supplies(dbcv pitchI xoff 0 num˙bits ”I” ”R”)

135);if

xoff=xoff +7.84 ; dist between I steps

)

step++; next step

);foreach

140 ;bus extension on first input.

contact = dbCreateInstByMasterName(dbcv ”cmos090” ”M3˙M2” ”symbolic”

nil

3.07:1.63+ num˙bits*pitchC ”R0”)

dbCreateProp(contact ”row” ”int” 2)

contact = dbCreateInstByMasterName(dbcv ”cmos090” ”M3˙M2” ”symbolic”

nil

145 3.07:1.63+(num˙bits -1)*pitchC ”R0”)

dbCreateProp(contact ”row” ”int” 2)

dbCreatePath(dbcv ”M3” l i s t (

3.07:1.375+ num˙bits*pitchC

3.07:1.885+(num˙bits -1)*pitchC) 0.14)

150 ;horizontal supplies

dbCreateRect(dbcv ”M6” l i s t (0:0 xoff -xspace :6))

dbCreateRect(dbcv ”M7” l i s t (0:11* pitchC xoff -xspace :11* pitchC -6))

dbSave(dbcv)

r e t u r n (t)

155);prog

);procedure

108

Figure B.1: Detail from CIC interpolator layout as generated by the SKILL code. Left side

shows 3 bits of the final comb filter step. Right side shows 4 bits of the first integrator

step.

109

B SKILL code excerpt

110

C SPIserialize

Source code for a compiled Python extension module performing conversion between paral-

lel and serial form. Used for interfacing between the chip SPI and the National Instruments

DAQ device.

spi.c

#i n c l u d e ¡Python.h¿

#i n c l u d e ¡numpy/arrayobject.h¿

#i n c l u d e ¡stdlib.h¿

4 #d e f i n e BITS 10

#d e f i n e MAX˙VAL 511

#d e f i n e MIN˙VAL -512

/**

9 * Serialization routine - MSB First

*/

s t a t i c i n t c˙serialize(l o n g * in, c h a r * out , i n t len)–

i n t i, j;

// Conversion loop

14 f o r (i = 0; i ¡ len; i++)–

i f ((*in ¡ MIN˙VAL) —— (*in ¿ MAX˙VAL))–

// Raise ValueError

PyErr˙Format(PyExc˙ValueError ,

”Array values must be within range (%d, %d)”,

19 MIN˙VAL , MAX˙VAL);

r e t u r n 1;

˝

// Serialize a word into single bits. MSB first

f o r (j = 0; j ¡ BITS; j++)–

24 out[BITS*i+j] = *in ¿¿ (BITS -1-j) & 0x1;

˝

in++;

˝

r e t u r n 0;

29 ˝

/**

* Converts array consisting of samples max BITS wide to array of

* serialized single bits wrapped in c˙uint8. This is the required data

34 * in DAQmx calls. The samples are in sequences of length BITS

*/

111

C SPIserialize

s t a t i c PyObject * serialize(PyObject *dummy , PyObject *args)

–

/* Parse Numpy array from argument *args */

39 PyArrayObject *wordArray = NULL;

i f (! PyArg˙ParseTuple(args , ”O!”, &PyArray˙Type , &wordArray))

r e t u r n NULL; // Raises exception

/* Create byteArray 10 times length of input array */

44 i n t len = PyArray˙DIM(wordArray , 0);

npy˙intp dims [1];

dims [0] = BITS*len;

PyArrayObject* bitArray = (PyArrayObject *) PyArray˙SimpleNew (1, dims ,

NPY˙BYTE);

49 i f (bitArray == NULL)– // raise TypeError

PyErr˙Format(PyExc˙TypeError ,

”Could not create numpy array from data”);

r e t u r n NULL;

˝

54

i n t status = c˙serialize ((l o n g *) PyArray˙GETPTR1(wordArray , 0),

(c h a r *) PyArray˙GETPTR1(bitArray , 0), len);

i f (status) r e t u r n NULL;

59 r e t u r n PyArray˙Return(bitArray);

˝

/**

* Conversion back to parallel form - MSB First

64 */

s t a t i c i n t c˙unserialize(c h a r * in, npy˙int16* out , i n t len)–

i n t i;

i n t j;

// Conversion loop; outer loop traverses shortest array

69 f o r (i = 0; i ¡ len; i++)–

*out = 0;

// leading sign bits of int must be set.

i f (in[BITS*i])–

74 // OR with mask to set all leading sign bits.

*out —= (npy˙int16)-0x400; // ˜0011 1111 1111;

˝

f o r (j = 0; j ¡ BITS; j++)–

79 *out —= in[BITS*i+j] ¡¡ (BITS -j-1);

˝

out ++;

˝

r e t u r n 0;

84 ˝

112

/**

* Converts a back from a sequence consisting of serialized single

* bits wrapped in c˙uint8 as read from the DAQmx device.

89 * Words are assumed to be of length BITS and MSB first. Returns a

* Numpy Array object of 16 bit samples.

*/

s t a t i c PyObject * unserialize(PyObject *self , PyObject *args)

–

94 /* Parse bitArray from argument *args */

PyArrayObject *bitArray = NULL;

i f (! PyArg˙ParseTuple(args , ”O!”, &PyArray˙Type , &bitArray))

r e t u r n NULL; // Raises exception

99 /* Create new bytearray w/length 1/BITS of input array */

i n t len = PyArray˙DIM(bitArray , 0) / BITS;

npy˙intp dims [1];

dims [0] = len;

PyArrayObject* wordArray = (PyArrayObject *) PyArray˙SimpleNew (1, dims ,

NPY˙INT16);

104

i f (wordArray == NULL)– // raise TypeError

PyErr˙Format(PyExc˙TypeError ,

”Could not create numpy array from data”);

r e t u r n NULL;

109 ˝

i n t status = c˙unserialize ((c h a r *) PyArray˙GETPTR1(bitArray , 0),

(npy˙int16 *) PyArray˙GETPTR1(wordArray , 0), len);

i f (status) r e t u r n NULL;

114

r e t u r n PyArray˙Return(wordArray);

˝

/* Python module information */

119 s t a t i c PyMethodDef spiMethods [] = –

–”serialize”, serialize , METH˙VARARGS ,

”Serializes array for SPI interface”˝,

–”unserialize”, unserialize , METH˙VARARGS ,

”Unserializes array for SPI interface”˝,

124 –NULL , NULL , 0, NULL˝ /* Sentinel */

˝;

PyMODINIT˙FUNC

initspi(v o i d)

129 –

(v o i d) Py˙InitModule(”spi”, spiMethods);

import˙array ();

˝

113

C SPIserialize

114

D Micro-controller firmware

The following code is source code for the ATMega32 µC firmware, written in C. It provides

an interface between the host computer and chip.

mcu.c

#i n c l u d e ¡avr/io.h¿

#i n c l u d e ¡avr/interrupt.h¿

#i n c l u d e ¡avr/wdt.h¿

4 #i n c l u d e ¡util/delay.h¿

#i n c l u d e ¡inttypes.h¿

/* Defines mapping between MCU ports and PCB pins */

#i n c l u d e ”mapping.h”

9 /* Aliases for ports */

#d e f i n e DDRSPI DDRB

#d e f i n e SCK PORTB7

#d e f i n e MISO PORTB6

#d e f i n e MOSI PORTB5

14 #d e f i n e SS PORTB4

#d e f i n e BAUD (19200)

#d e f i n e UBRR (F˙CPU /16/ BAUD - 1)

19 #d e f i n e uchar˙max (1¡¡8)

#d e f i n e mask 0x1F

/* Very simple protocol defining command words for each signal path

* configuration of the chip.

24 */

#d e f i n e CMD˙CICI 1

#d e f i n e CMD˙CICD 2

#d e f i n e CMD˙FIR 3

#d e f i n e CMD˙DSM 4

29 /* Global variable storing the chosen chip configuration. Must be set

* as first byte of the transmission.

*/

v o l a t i l e uint8˙t command = 0;

34 /*

* Interrupt routine for USART RX complete. First byte of any

* transmission is assumed to be a command , initializing the config

115

D Micro-controller firmware

* bits during the command loop. Translation between five -bits

* USART bytes and eight -bit SPI bytes are done using a 16-bit

39 * shift register buffer. Bits are shifted in , MSB first , from

* USART. When more than eight bits are present , these are sent

* over SPI to the chip , and shifted out of the buffer.

*

* Watchdog is also reset on USART recieve.

44 */

ISR(USART˙RXC˙vect)

–

/* Buffer position counter */

s t a t i c uint8˙t off = 16;

49 s t a t i c uint16˙t buffer;

/* Do not reset chip while transmissions are incoming in short

* intervals. */

wdt˙reset ();

/* First byte of the transmission is a command. */

54 i f (! command)–

command = UDR;

r e t u r n ;

˝

/* Shift incoming into buffer */

59 off -= 5;

buffer &= ˜((uint16˙t)mask ¡¡off);

buffer —= ((uint16˙t)UDR ¡¡off);

i f (off ¡= 8)–

/* If buffer contains more than 8 bits of valid data , send

64 * across SPI */

SPDR = buffer ¿¿ 8;

/* Shift sent data out of buffer */

buffer ¡¡= 8;

off += 8;

69 ˝

˝

/*

* Interrupt routine triggering on complete SPI transmission of a

74 * single 8-bit byte incoming from the chip. A two -byte shift

* register is used as buffer to split incoming data into five -bit

* bytes. These are sent to host across UART. A static int SPIoff

* keeps track of the postition in the buffer between interrupt

* calls.

79 */

ISR(SPI˙STC˙vect)

–

/* Position counter */

v o l a t i l e s t a t i c uint8˙t SPIoff = 8;

84 s t a t i c uint16˙t buffer;

/* Read SPI data into buffer */

116

SPIoff += 8;

buffer ¡¡= 8;

buffer —= (uint16˙t)SPDR;

89 w h i l e (SPIoff ¿= 8)–

/* If buffer contains enough data , send across USART. */

SPIoff -= 5;

UDR = buffer ¿¿ SPIoff;

˝

94 ˝

/*

* Main loop configurates chip mux control bits for the selected

* signal path as given by the command byte , which is the first

99 * byte recieved in any transmission. A configuration is set and the

* rest of the program is interrupt -driven by SPI and USART

* interrupts.

*/

v o i d mainLoop(v o i d)

104 –

w h i l e (1)–

/* Command Loop */

s w i t c h (command)–

/* Switch by given command byte.

109 * Applies one CONFIG set for each valid command */

/* FIR FIlter config set */

c a s e CMD˙FIR :–

PORTC = (1¡¡CFG˙OUT˙A) —// SPI output mux

(0¡¡CFG˙OUT˙B) — // SPI output mux

114 (1¡¡CLEAR);

˝ b r e a k ;

/* CIC Decimate config set */

c a s e CMD˙CICD :–

PORTC = (0¡¡CFG˙OUT˙A) —// SPI output mux

119 (0¡¡CFG˙OUT˙B) — // SPI output mux

(0¡¡CFG˙CIC˙D) — // SPI input

(1¡¡CLEAR);

˝ b r e a k ;

/* CIC Interpolate config set */

124 c a s e CMD˙CICI :–

PORTC = (0¡¡CFG˙OUT˙A) —// SPI output mux

(1¡¡CFG˙OUT˙B) — // SPI output mux

(0¡¡CFG˙CIC˙I) — // SPI input

(1¡¡CFG˙CIC˙CLK) —// CLK div 4

129 (1¡¡CLEAR);

˝ b r e a k ;

/* Delta -Sigma Modulator config set */

c a s e CMD˙DSM :–

PORTC = (1¡¡CFG˙DSM) — // SPI input

134 (1¡¡CLEAR);

117

D Micro-controller firmware

˝ b r e a k ;

d e f a u l t : c o n t i n u e ;

˝

/* Wait for interrupts after command byte is set */

139 w h i l e (command) PORTA = ˜SPSR;

˝

˝

/*

144 * Initializes ports and registers. Watchdog resets MCU and chip

* between transmissions. In practice , this enables only a single

* transmission of data , suitable only for a test setup.

*/

i n t main(v o i d)

149 –

/* Port init */

DDRA = 0xFF;

PORTA = ˜0x01;

154 /* Single input. Rest of PORTB are output */

DDRB = ˜(1¡¡MISO);

DDRC = 0xFF;

/* USART init */

159 UBRRL = UBRR;

/* Enable RX, TX, RX interrupts */

UCSRB = (1¡¡TXEN) — (1¡¡RXEN) — (1¡¡RXCIE);

/* Set 1 stop bit , frame format to 5bits */

UCSRC = (1¡¡URSEL) — (0¡¡USBS) — (0¡¡UCSZ1) — (0¡¡UCSZ0);

164

/* SPI Init PORTB */

/* SPI Enable , Master , SPI˙clk: fosc/16, Interrupt enable */

SPCR = (1¡¡SPE) — (1¡¡MSTR) — (1¡¡SPR0) — (1¡¡SPIE);

/* Watchdog Init , about 1 sek. */

169 WDTCR = (1¡¡WDE) — (6¡¡WDP0);

/* Clear on init */

PORTC = (0¡¡CLEAR);

/* Enable interrupts and go to command loop */

174 sei();

mainLoop ();

˝

118

E Python host script

Most of the measurements are done using the DAQ device setup. The below script shows

how the micro-controller setup is done very efficiently, requiring only a small amount of

code. For comparison; an estimated 800 lines of Python code is written for host side

control of the DAQ setup.

hostside.py

#!/usr/bin/env python

from ˙˙future˙˙ i m p o r t with˙statement

i m p o r t serial , sys , time

4 i m p o r t numpy

from pylab i m p o r t *

Command byte protocol

CMD˙CICI = chr(1)

9 CMD˙CICD = chr(2)

CMD˙FIR = chr (3)

CMD˙DSM = chr (4)

d e f com˙write(datastr):

14 ””” Writes an array to the serial port ”””

d e f int˙to˙bytes(i):

””” Converts input integer to tuple of two five -bit bytes ”””

low = i & 0x1F

hi = (i¿¿5) & 0x1F

19 r e t u r n ”%c%c”% (hi , low)

f o r i i n datastr:

ser.write(int˙to˙bytes(i))

24 d e f com˙read ():

””” Reads array from serial port ”””

d e f bytes˙to˙int(bytes):

””” Combines two five -bit bytes to a single integer ”””

hi = ord(bytes [0])

29 low = ord(bytes [1])

i f hi & 0x10: # negative value

r e t u r n -0x400 — (((hi ¡¡5) — low))

e l s e :

r e t u r n (hi ¡¡5) — low

34

119

E Python host script

read bytes , combine two and two bytes into array values

i = 0

w h i l e ser.inWaiting () ¿= 2:

bytes = ser.read (2)

39 val = bytes˙to˙int(bytes)

readArray[i] = val

i += 1

d e f plot˙result ():

44 ””” Plot input and filtered data. ”””

figure (1); clf()

xval = range(0, len(yval))

plot(xval , yval)

xval = range(0, len(readArray))

49 stem(xval , readArray)

axis([0, len(yval), -520, 520])

show()

Setup serial port

54 ser = serial.Serial(1, baudrate =19200 , bytesize=5, parity=’N’,

stopbits=1, timeout =0.1)

t r y :

p r i n t ser.portstr

p r i n t ”“n---input:---”

59 # Write CIC configuration command to MCU

ser.write(CMD˙CICD)

Generate test signals

f˙s = 44100

f˙max = f˙s/4

64 w1 = 0.0063*2* pi*f˙max

xval = arange(start=0, stop =0.02, step = 1.0/ f˙s *10)

yval = 511* sin(xval*w1)

yval = require(yval , dtype=’int16 ’)

To test CIC decimator , SPI input requires repeated values

69 # to emulate Nyquist clock rate operation.

yval = yval.repeat (8)

readArray = zeros(len(yval), dtype=’int16’)

Write data to chip through MCU

74 com˙write(yval)

p r i n t ”“n---output:---”

Some delay to allow computer serial buffer to fill

time.sleep (0.2);

com˙read ()

79 plot˙result ()

f i n a l l y :

ser.close()

120

Bibliography

[1] K. Adaos, G. Alexiou, and N. Kanopoulos. Development of reusable serial fir fil-

ters with reprogrammable coefficients designed for serial dataflow architectures. In

Electronics, Circuits and Systems, 2000. ICECS 2000. The 7th IEEE International

Conference on, volume 1, pages 567–570 vol.1, 2000.

[2] ZigBee Alliance. Zigbee success story: Perfect ice conditions ensure faster speed

skating times. Success story. Available online at www.zigbee.org, 2009.

[3] S. Ardalan and J. Paulos. An analysis of nonlinear behavior in delta - sigma modulators.

Circuits and Systems, IEEE Transactions on, 34(6):593–603, Jun 1987.

[4] Avr121: Enhancing adc resolution by oversampling. Application note. Available online

at www.atmel.com, 2005.

[5] T.J. Barnes. Skill: a cad system extension language. In Design Automation Confer-

ence, 1990. Proceedings., 27th ACM/IEEE, pages 266–271, Jun 1990.

[6] Maciej Borkowski. Digital Delta-Sigma Modulation. Variable modulus and tonal be-

haviour in a fixed-point digital environment. PhD thesis, Faculty of Technology, De-

partment of Electrical and Information Engineering, University of Oulu, 2008.

[7] R. Brodersen, A. Chandrakasan, and S. Sheng. Low-power signal processing systems.

VLSI Signal Processing, V, 1992., [Workshop on], pages 3–13, Oct 1992.

[8] Cadence design systems, Inc. SKILL Language Reference, product version 06.30

edition, 2007.

[9] J. Daniels, W. Dehaene, M. Steyaert, and A. Wiesbauer. A 350-mhz combined tdc-

dtc with 61 ps resolution for asynchronous δσ adc applications. In Solid-State Circuits

Conference, 2008. A-SSCC ’08. IEEE Asian, pages 365–368, Nov. 2008.

[10] A.E. de la Serna and M.A. Soderstrand. Trade-off between fpga resource utilization

and roundoff error in optimized csd fir digital filters. In Signals, Systems and Comput-

ers, 1994. 1994 Conference Record of the Twenty-Eighth Asilomar Conference on,

volume 1, pages 187–191 vol.1, Oct-2 Nov 1994.

121

www.zigbee.org
www.atmel.com

Bibliography

[11] H. Fujisaka, R. Kurata, M. Sakamoto, and M. Morisue. Bit-stream signal processing

and its application to communication systems. Circuits, Devices and Systems, IEE

Proceedings -, 149(3):159–166, 2002.

[12] R.M. Hewlitt and Jr. Swartzlantler, E.S. Canonical signed digit representation for fir

digital filters. In Signal Processing Systems, 2000. SiPS 2000. 2000 IEEE Workshop

on, pages 416–426, 2000.

[13] Eugene B. Hogenauer. An economical class of digital filters for decimation and inter-

polation. Acoustics, Speech, and Signal Processing [see also IEEE Transactions on

Signal Processing], IEEE Transactions on, 29(2):155–162, Apr 1981.

[14] ITRS. International technology roadmap for semiconductors, 2007 edition. Available

online at http://www.itrs.net, 2007.

[15] Erwin Janssen and Derk Reefman. Super-audio cd: An introduction. IEEE Signal

Processing Magazine, pages 83–90, July 2003.

[16] N.S. Kim, T. Austin, D. Baauw, T. Mudge, K. Flautner, J.S. Hu, M.J. Irwin, M. Kan-

demir, and V. Narayanan. Leakage current: Moore’s law meets static power. Com-

puter, 36(12):68–75, Dec. 2003.

[17] E.T. King, A. Eshraghi, I. Galton, and T.S. Fiez. A nyquist-rate delta-sigma a/d

converter. Solid-State Circuits, IEEE Journal of, 33(1):45–52, Jan 1998.

[18] T.S. Lande, T.G. Constandinou, A. Burdett, and C. Toumazou. Running cross-

correlation using bitstream processing. Electronics letters, 43(22), October 2007.

[19] Yong Liang, Qiao Meng, and Zhi-Gong Wang. The implementation of 1-ghz bit-

stream adder used in signal processing in a 0.18-µm cmos technology. In Solid-State

and Integrated-Circuit Technology, 2008. ICSICT 2008. 9th International Conference

on, pages 1871–1873, Oct. 2008.

[20] Olav E. Liseth. Low power bitstream running cross-correlator/convolver. Master’s

thesis, University of Oslo, 2009.

[21] R.A. Losada and R. Lyons. Reducing cic filter complexity. Signal Processing Magazine,

IEEE, 23(4):124–126, July 2006.

[22] J. Markus and G.C. Temes. An efficient delta-sigma adc architecture for low oversam-

pling ratios. Circuits and Systems I: Regular Papers, IEEE Transactions on, 51(1):63–

71, Jan. 2004.

[23] Alain J. Martin. Asynchronous datapaths and the design of an asynchronous adder.

Formal Methods in System Design, (1):117–137, July 1992.

122

http://www.itrs.net

Bibliography

[24] The MathWorks, Inc. MATLAB Documentation, r2008b edition, 2008.

[25] Zhi-Jian (Alex) Mou. A study of vlsi symmetric fir filter structures. The Journal of

VLSI Signal Processing, 4(4):371–377, Nov. 1992.

[26] C.-I.C. Nilsen and S. Holm. Distortion-free delta-sigma beamforming. Ultrasonics,

Ferroelectrics and Frequency Control, IEEE Transactions on, 55(8):1719–1728, Au-

gust 2008.

[27] Steven R. Norsworthy, Richard Schreier, and Gabor C. Temes, editors. Delta-Sigma

Data Converters - Theory, Design and Simulation. IEEE Press, 1997.

[28] Kiyoshi Oguri, Yuichiro Shibata, and Akira Nagoya. Asynchronous bit-serial datapath

for object-oriented reconfigurable architecture pca. In Advances in Computer Systems

Architecture, volume 2823/2003, pages 54–68. Springer Berlin / Heidelberg, 2003.

[29] P. O’Leary and F. Maloberti. Bit stream adder for oversampling coded data. Elec-

tronics Letters, 26(20):1708–1709, Sept. 1990.

[30] John G. Proakis and Dimitris G. Manolakis. Digital Signal Processing. Pearson Pren-

tice Hall, 4 edition, 2007.

[31] Richard Schreier and Gabor. C. Temes. Understanding Delta-Sigma Data Converters.

John Wiley & Sons, Inc, 2005.

[32] E. Schuler and L. Carro. Reliable digital circuits design using sigma-delta modulated

signals. Defect and Fault Tolerance in VLSI Systems, 2005. DFT 2005. 20th IEEE

International Symposium on, pages 314–324, Oct. 2005.

[33] C.E. Shannon. Communication in the presence of noise. Proceedings of the IEEE,

86(2):447–457, Feb 1998.

[34] L. E. Turner, P. J. W. Graumann1, and S. G. Gibb. Bit-serial fir filters with csd coef-

ficients for fpgas. In Field-Programmable Logic and Applications, volume 975/1995,

pages 311–320. Springer Berlin / Heidelberg, 1995.

[35] Mark Weiser. The computer for the twenty-first century. Scientific American,

265(3):94–104, 1991.

123

	Introduction
	Ubiquitous computing
	Power consumption

	System overview
	Signal recoding
	Bitstream cross-correlation
	Module interface
	Convolution

	System evaluation

	Delta-Sigma modulation
	Digital Encoding
	Coding forms
	Quantization
	Oversampling
	Noise shaping
	Higher order modulators

	Coding Efficiency
	Signal quality
	Optimized NTF
	True serial representation
	Robust coding

	Delta Sigma Encoder
	Digital-to-digital
	Requirements
	Design choices

	Simulations
	Periodogram

	Bitstream signal processing
	Addition
	Multiplication

	Interpolation
	Interpolation filter
	Ideal interpolation

	Cascaded interpolation filter
	Requirements in a DSM system
	Multi stage filtering

	Step 1: Finite Impulse Response (FIR) filter
	Half-band filter
	Structural improvements

	Step 2: Cascaded Integrator Comb (CIC) filters
	Filter parameters
	Bit growth in CIC filters

	Simulations
	FIR Half-band filter
	CIC Interpolation filter
	Cascaded interpolation filter
	Interpolation and DSM

	Decimation
	Ideal decimation
	Aliasing

	Decimation in a Delta Sigma system
	Decimation of cross-correlated signal

	Simulations

	Circuit implementation
	Basic blocks
	Adders
	Registers
	Upsampling
	Downsampling
	Gain steps
	Serial arithmetic

	Layout using SKILL
	Control and interface
	Clock division
	Serial Peripheral Interface Bus (SPI)
	Interconnection and routing

	Chip measurements
	Printed Circuit Board (PCB)
	Measurement setup
	Results
	DSM
	FIR filter
	Faulty CIC filter design

	Power simulations

	Conclusion
	Future work

	Paper
	SKILL code excerpt
	SPIserialize
	Micro-controller firmware
	Python host script

