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Abstract

Cross-correlation gives a measure of the similarity between two signals in the time
domain and is desirable in pattern matching and recognition, but other solutions are
often sought after due to the heavy computational load. The work includes processing
of signals in their oversampled ∆Σ domain, bitstream processing, and asynchronous
techniques. Employing these techniques resulted in a novel signal processing solution.

This master thesis presents a power efficient implementation of a time-domain bit-
stream cross-correlator suitable for integration in CMOS. The developed generic SKILL
script can generate layouts with different dimensions and one version is fabricated in
90 nm CMOS. Cross-correlation can be used for heartbeat detection in an ECG analysis
and the implemented chip is tested with real-world Electrocardiography (ECG) beat
detection. The power dissipated by the chip is compared to the power dissipated by a
microcontroller performing equal computations. The bitstream cross-correlator has an
estimated improvement in power dissipation by a factor of 84.
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1 Introduction

1.1 Motivation

Cross-correlation gives a measure of the similarity between two signals in the time
domain. Cross-correlation is desirable in pattern matching and recognition, but other
solutions are often sought due to the heavy computational load.

A novel architecture for running cross-correlation is proposed in [Land 07]. It is pos-
sible to increase the efficiency compared to traditional cross-correlation by using sim-
ple logic on the bitstream produced by a delta-sigma, ∆Σ (or sigma-delta), modulator.
The goal of this master thesis is to implement the suggested bitstream running cross-
correlation method and to demonstrate a practical area of application. The efficiency of
the bitstream cross-correlation is compared to other solutions in terms of power, area,
accuracy and speed. The used data processing method is discussed and parallels are
drawn to similar processing methods.

The third wave of computing, Ubiquitous computing, leads to that technology van-
ishes into the background of our lives [Weis 91]. Small, seamlessly integrated comput-
ers around and even within us means that charging and changing of batteries is a less
favored operation. Wireless Sensor Networks (WSN) are a part of a ubiquitous future
and have raised significant research activity lately. A WSN consists of many sensor
nodes, each node being autonomous, typically equipped with one or more sensors, a
radio transceiver, an energy source and a small microcontroller. The nodes are often
small in size and use batteries. Each node has a limited communication range, but long
range communication is possible by sending data through other nodes to complete the
transmission to the base station. Energy is consumed by sensing, data processing and
data communication, and often the most energy-expensive operation is data transmis-
sion. In WSNs, and most small, portable, battery operated devices, the scarcest resource
is energy. Local data processing can reduce the amount of data to be transmitted with
overall energy savings as the profit.

The vision of a ubiquitous interaction between human and machine requires sensing
of the analog surroundings of a device and analog-to-digital converters are used for
further digital processing of data. A popular and power efficient converter architecture
is the ∆Σ converter, which uses oversampling to produce a one bit representation of
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1 Introduction

the sampled signal. The value of the sampled signal is a local average of several bits
from the bitstream produced. The oversampling rate is one factor to acquire the desired
resolution in the converter at the cost of a higher clock rate. The bitstream is usually
decimated to the Nyquist rate, resulting in a multibit signal. An example of efficient
use of bitstream processing was proposed in [Malo 91], the methodology presented
concerns the detection of input signals by the correlation technique. A commercial use
of bitstreams is found in the Super Audio CD (SACD), developed by Sony and Philips
Electronics. The SACD is an optical audio disc where the audio is stored as a bitstream
[Jans 03].

Many methods for simplification of the cross-correlation operation are found in the lit-
erature. Examples are the weighted correlation of differences methods [Alpe 86] and
average magnitude cross difference methods [Lind 88]. Both were considered to be
more computationally efficient as they do not require the intense multiplicative pro-
cesses associated with cross-correlation.

Convolution is the single most important technique in Digital Signal Processing (DSP)
[Smit 97]. Its applications include statistics, image and signal processing, electrical en-
gineering and differential equations. Convolution is the same mathematical operation
as cross-correlation, the only difference being that one of the signals of interest is re-
versed.

A power efficient running bitstream cross-correlator/convolver benefits from the sim-
ple 1 bit representation of the signal. This representation of the signal is already present
in many relevant applications, but rarely utilized. Cross-correlation and convolution
are two of the most used processing tools in the digital signal processing toolbox and
accurate and efficient computation methods are desired.

The old concept of clockless circuitry is again a subject of research. A system without a
clock can be both faster and more energy efficient than its clocked counterpart. There
are, however, many caveats and challenges in designing an asynchronous system. The
clockless part of the implemented circuit is discussed and placed within asynchronous
theory, theories expound when the asynchronous concept was evolved in the late 1950s.

1.2 Field of application

The processing method discussed in this thesis is feasible in a wide variety of applica-
tions. The article [Last 04] proposes a new heartbeat detection approach based on the
fundamentals of cross-correlation. In the article, cross-correlation is used to identify dif-
ferent waveforms within a heartbeat. The thorough study uses ECG data from a large

2



1.2 Field of application

online database. This thesis will investigate how bitstream running cross-correlation
performs compared to the ordinary cross-correlation scheme applied in the article.
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2 Clockless computation

Synchronization is the coordination of events to operate a system in unison. There are
at least two different solutions to synchronize a digital system, the most common ap-
proach being to perform all events in the system synchronously. This involves a system
clock, a concept every computer customer has some relation to. There are many advan-
tages to synchronous computation, which today is the only solution to synchronization
for most electronics developers.

As a chain is only as strong as its weakest link, a digital system can only be as fast as
its slowest component. Optimization and pipelining of a system can equalize the time
spent in each computation block, but various factors prevents the next clock tick from
striking at the most optimum time. Instead of operating the whole system at the same
pace, asynchronous solutions are possible. The same optimization and pipelining are
necessary, but each computation element indicates when outputs are valid and when
inputs are read. The time spent on each computational step is adapted to the actual
computation time.

Moore’s law states that the number of transistors on integrated circuits are doubled
every eighteen months. Shrinking manufacturing processes will typically reduce the
power dissipation for a given circuit. Smaller transistors

1. allow a higher transistor count per IC

and

2. result in lower capacitances which allows for higher clock frequencies

These two factors lead to the downside of Moore’s law; the power consumption of
computer nodes doubles every eighteen months [Feng 03].

The growing need of power efficient circuits has inspired developers to revisit the old
concept of the clockless chip. Most digital circuits designed today are synchronous,
meaning that a system clock synchronizes computation. Research in clockless design
goes back to the mid 1950s [Mull 59] and principles presented in the paper are still valid
today. Clockless, or asynchronous, circuits do not require a system clock to compute
or exchange data. Asynchronous circuit elements pass the result as soon as calcula-
tions are finished. This form of communication seems promising, but has several pit-
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2 Clockless computation

falls. Many factors have to be considered when choosing between a synchronous, asyn-
chronous or hybrid design. Lack of tools and expertise makes this a difficult choice.

The implemented circuit is described in chapter 5 and some techniques similar to asyn-
chronous computing are used. To understand the differences and to see the similarities,
a basic understanding of asynchronous techniques is important.

2.1 Asynchronous techniques, a brief overview

The major difference between asynchronous and synchronous design is the way data is
exchanged between computational elements. Synchronous, or clocked, design requires
a global signal which sets a time limit for every subcircuit’s completion of a specific
task. The clock defines a timing constraint which all circuit elements must follow. Fig.
2.1(a) illustrates the timing constraint of clocked logic, where ∆τ is the time available,
illustrated in Fig. 2.1(b). The time cycle consists of, in addition to the logic execution
average time, the extra time it takes to run the worst case logic (worst – average case),
variations in clock operations and manufacturing differences.

Asynchronous logic does not need the extra overhead clocked logic requires. Instead,
handshaking is used. A circuit element indicates when its outputs are valid and when
its inputs have been read. The time used for every computational element is kept to a
minimum, regardless of process and environmental variations.

(a) Synchronous computation.

Cycle time of clocked logic

Cycle time of

clockless logic

Manufacturing margin

Clock jitter, skew margin

Worst−average case

(b) ∆τ, synchronous time cycle [Geer 05].

Figure 2.1: Synchronous time cycle principle.

2.1.1 Handshake protocols

Various handshake protocols compatible in asynchronous circuits exist. Handshak-
ing is a well-known term in synchronous logic, used for synchronization, to estab-
lish a connection between two devices, as well as other functions. Handshaking en-
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2.1 Asynchronous techniques, a brief overview

sures that a register does not accept data from its predecessor before its successor has
stored the data that the register was previously holding. The 4-phase protocol is illus-

Figure 2.2: The 4-phase protocol.

trated in Fig. 2.2. There are 4 steps and two control lines involved in the handshaking
process[Spar 01]:

1. The sender issues data and then sets request high.

2. The receiver latches data and then sets acknowledge high.

3. The sender responds by taking request low, data is no longer guaranteed to be
valid.

4. The receiver acknowledges this by taking acknowledge low.

At this point, the sender may initiate the next communication cycle. This protocol is
reliable regardless of the time delay in the wires between the two parties; the protocol
is Delay-Insensitive (DI).

The 4-phase protocol has a disadvantage in the redundant return to zero transition.
Instead, a transition on the request and acknowledge lines can ensure proper behavior.
A transition from 0 to 1 has the same meaning as a transition from 1 to 0. This results
in two less steps and the handshaking method is named the 2-phase protocol.

The clock is substituted by handshaking and each computational block indicates when
data shall be passed on and received. Several restrictions apply and some considera-
tions and solutions follow.

2.1.2 The Muller C-element

Implementation of handshaking logic requires that signals need to be valid at all times.
One possible effect of a temporary transition on the request line, is duplication of data.

7



2 Clockless computation

If the output of an AND gate changes from 0 to 1, it can be concluded that both inputs
are 1. However, a conclusion about both inputs cannot be made for a transition on the
output from 1 to 0. At least one input has changed, but there is no information about
which one. Input signal transitions that are not indicated on the output are the source
of hazards and should be avoided.

A fundamental component in asynchronous circuits is the Muller C-element, Fig. 2.3.
For every transition on the output, a conclusion about the input can be made. When
both inputs are 0, the output is set to 0, while the output is set to 1 when both inputs
are 1.

a b y
0 0 0
0 1 no change
1 0 no change
1 1 1

Figure 2.3: The Muller C-element: Symbol, possible implementation and truth table.
The letter w indicates that the transistors of the inverter are weak.

2.1.3 The Muller pipeline

The Muller pipeline relays handshakes and is, in one form or another, the control back-
bone of almost all asynchronous circuits [Spar 01]. Fig. 2.4 shows the Muller pipeline,
which is built with inverters and Muller C-elements.

Considering the ith C-element, C[i], the following pseudocode summarizes the behavior
of the Muller pipeline:

I f C[ i −1] > C[ i ] and C[ i −1] != C[ i + 1 ] :
swap (C[ i ] , C[ i −1])

The ith C-element will input and store a 1 only if its predecessor, C[i-1], is 1 and its
successor, C[i+1] is 0. Or a more generic explanation, the value of the predecessor

8



2.1 Asynchronous techniques, a brief overview

C

C[i−1]

Ack

Req
C

C[i]

Ack

Req
C

C[i+1]

Ack

Req

Ack

Req

Figure 2.4: The Muller pipeline.

will propagate to the current element, if the value is the opposite of the value of the
successor.

If a right hand environment does not respond to a handshake, the ripple of handshake
will stop and the pipeline will fill. Following the above pseudocode, the Muller C-
element outputs are (. . . , 0, 1, 0, 1, . . .), every other element outputs a logic high.

The Muller pipeline works correctly regardless of delays in gates and wires; the Muller
pipeline is Delay-Insensitive.

Circuit implementation style, 4-phase bundled-data

The 4-phase bundled-data protocol uses a Muller pipeline to generate local clock pulses.
Fig. 2.5 shows how the Muller pipeline controls a pipeline with combinational logic. To

C

Ack

Req
C

Ack

Req
C

Ack

Req

Ack

Req

Latch

EN

Comb.

logic
Latch

EN

Comb.

logic
Latch

EN

Data Data

Figure 2.5: A 4-phase bundled data pipeline.

ensure completion of each combinational stage, a matching delay, τ in the figure, has to
be inserted in the request signal path.

This pipeline implementation is particularly simple, but has some drawbacks:
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2 Clockless computation

• When it fills, only every other latch stores data.

• A handshake cycle involves communication with both neighbors, which reduces
speed.

An implementation of the 4-phase bundled-data protocol gives a good understanding
of asynchronous circuits, alternative implementations are faster and have a better oc-
cupancy when full.

2.2 Power dissipation

One possible advantage of asynchronous computation is less power consumption. The
dynamic power dissipation of an asynchronous system can be considerable lower than
in a clocked system. Equations in this section are mainly derived from [Kim 03].

2.2.1 Dynamic power dissipation

A transistor dissipates a small amount of power when it is switched on and off and
even when it is off [West 05]. The first case is called dynamic power dissipation and
is mainly caused by charging the load capacitance. Current typically flows from Vdd
to charge the load and then from the load to GND during discharge. For a traditional
inverter, the charging of the load capacitance to Vdd will take place when the input is
low, and discharging the capacitance when the input is high. In addition, Vdd and GND
will be short circuited for a short period while the input to the inverter is between Vtn
and Vdd− |Vtp|, where Vtn and Vtp denote the threshold voltage for a NMOS and PMOS
transistor respectively. This results in a current pulse from Vdd to GND and is caused by
the switching time being larger than zero and both the pullup and pulldown transistors
are partially turned on. The dynamic power has traditional been the dominant source
of power consumption.

2.2.2 Static power consumption

Leakage current will occur when a transistor is turned off, known as static power dis-
sipation. Ideally, no current flows through a turned off transistor. The two principal
components of static power consumption are [Kim 03]:

• Subtreshold leakage, a weak inversion current across a transistor.

• Gate leakage, a tunneling current through the gate oxide insulation.

10



2.2 Power dissipation

The components of static power dissipation were in older processes said to be zero.
The current leakage increases when the threshold voltage and gate-oxide thickness de-
creases and is today an important design constraint.

The subtreshold leakage current is proportional to e−Vt . An increase in the threshold
voltage, because it appears as a negative exponent, can have a dramatic effect on the
leakage current. Unfortunately, increasing Vt will reduce the operation frequency of a
CMOS logic circuit, which is given by:

f ∝ (V −Vt)
α /V (2.1)

where V is the transistor’s supply voltage and the exponent α is an experimentally
derived constant. A transistor with a high threshold voltage can not deliver enough
current to maintain the maximum operation frequency. Using doping techniques or
applying a bias voltage on the substrate of a transistor can increase the threshold volt-
age, which allows a designer to compromise between speed and power in different
parts of their design.

A solution to reduce the gate leakage current is the use of high-κ dielectrics to better in-
sulate the transistor’s gate from the channel. This can bring gate leakage under control
by 2010 [Kim 03].

Both main components in static power depend on the width of a transistor and obvi-
ously the number of transistors.

2.2.3 Overall power consumption

The static power consumption was predicted to exceed the dynamic power consump-
tion as technology drops below 65 nm feature size [Kim 03]. The next equation defines
overall power consumption as the sum of dynamic and static power:

P = ACV2 f + VIleak (2.2)

In the first term, A is the fraction of gates actively switching, C is the total capacitance
load of all gates and f is the operating frequency. The product of these factors consti-
tutes the dynamic power consumption. The second term models the static power lost
due to leakage current, Ileak. The equation ignores power loss due to the momentary
short circuit when a gate switches, which is relatively small.

The V2 factor in Eq. 2.2 suggests reducing supply voltage as the most effective method
to decrease power consumption. The reduction of supply voltage leads to a lower oper-
ation frequency, which can be compensated with parallel or pipelined implementations.
Transistor count and size are also important contributors to both static and dynamic
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2 Clockless computation

power. Furthermore, a reduction of the number of them switching will drastically re-
duce the dynamic power.

2.2.4 Clock power dissipation

The vast majority of digital circuits use a system clock. The clock binds the entire chip
to run at the speed of the slowest component, every logic subpart of the chip has to
wait until the next tick from the clock. Clock driver circuits occupy a large amount
of the limited chip area and consume a large percentage of the total power usage. In
[Davi 97] it is said that the DEC Alpha CPU clock driver circuit occupies about 10%
of the chip area and consumes over 40% of the power dissipated by the chip. The
clock provides synchronization information, but does not principally contribute to the
computed result. The clock distribution is power consuming even during idle periods
and extensive effort is devoted to clock power saving circuits.

2.3 Synchronous vs. asynchronous

There are many valid arguments for the use of both synchronous and asynchronous
solutions. Some of the reasons that clocked processors have dominated the industry
since the 1960s [Geer 05] are that developers saw them as more reliable, capable of
higher performance, and easier to design, test and run than their clockless counterparts.

2.3.1 Clockless advantages

There are many advantages associated with asynchronous logic, but implementing
such a system is not necessarily favorable. In addition to faster computation, two dis-
tinct advantages are evident:

Power dissipation

The previously described handshake protocols use one line to request and one line to
acknowledge for every bit exchanged. A traditional clock only uses one line to synchro-
nize communication between computing blocks. Claiming that the clockless solution
is power saving can seem faulty at first glance. The fact is that the many handshakes
are most likely to use more dynamic power than a system clock solution. The bright
side is that asynchronous systems more than offset this [Geer 05] because each subcir-
cuit only uses power when it performs computation, while synchronous systems also
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2.3 Synchronous vs. asynchronous

use power in idle periods. Power is not only used to drive the clock circuits, power is
also dissipated when the clock charges and discharges gates and lines in every subcir-
cuit resulting in dynamic power dissipation. In asynchronous circuits, dynamic power
dissipation is proportional to data processed.

Less electromagnetic interference (EMI)

In clocked designs, data moves at every tick of the clock, causing voltage spikes. This
results in electromagnetic interference at the clock frequency and long clock lines aggra-
vate the emitted EMI. In clockless designs, the current flow is spread out in time. The
frequency and strength of the voltage spikes are reduced, minimizing the emitted EMI.
Noise errors due to EMI are reduced on-chip and on nearby electronics. Low EMI is
especially important in mixed mode design, where the analog part is sensitive to noise,
e.g. an analog to digital converter.

2.3.2 Clockless challenges

The design of asynchronous logic is far from mature and there are many caveats bound
to the technology. Many decades have been used to optimize clocked logic to the ut-
most. Extensive effort is essential to build up knowledge, building tools and experience
on clockless logic. There is still a long way before research on clockless logic reaches
the knowledge level of clocked logic. Some of the challenges seen today follow.

Integrating clocked with clockless logic

Few or none complete asynchronous systems are available on the market and therefore
clocked and clockless logic need to interface. Clockless circuits request and acknowl-
edge data at their own speed, while their clocked counterpart require valid data by each
clock tick . Special circuits are needed to align the data.

Lack of tools and experience

Most of the integrated circuit software is developed to create clocked circuits. Designers
often have to create their own tools or implement whole systems manually, which is
time consuming and leads to high development costs. Some programming languages
and synthesis tools exist.
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2 Clockless computation

The limited number of courses at colleges and universities concerning asynchronous
design will not favor the field of clockless computation in the near future.

Full speed

Debugging asynchronous logic is complicated as it always runs at full speed. As there
is no clock frequency to lower, one cannot slow down the system to detect when and
where the circuit fails. This problem will come into view in later chapters.

Performance analysis

It is important that a new method of comparing performance is introduced. The perfor-
mance of asynchronous logic is the outcome of environmental conditions and the data
pattern to be processed and is therefore less defined than traditional clocked circuits.
This is an important marketing consideration, where only the most effective circuitry
will survive in this competitive market.

2.4 MiniMIPS — An asynchronous microprocessor

There are few or none commercially successful clockless chips, but fully implemented
examples exist.

In 1997, the Caltech group completed the design of the MiniMIPS [Mart 97] — an asyn-
chronous clone of a MIPS R3000 microprocessor. The goal was to implement the R3000
instruction set. The asynchronous counterpart should behave as its inheritor, but ar-
chitectural similarity to existing MIPS microprocessors was not required. This permits
maximum asynchronous optimization.

A speed and energy performance analysis was published in 2001. The performance of
the MiniMIPS was measured in Million Instructions Per Second (MIPS), which should
be used with skepticism as it is not comparable between CPU architectures. (Differ-
ent interpretations of the acronym exist, “Meaningless Indicator of Processor Speed”
among others.) The use of MIPS on circuits using the same instruction set and under
the same conditions is considered reliable. The publication states that the asynchronous
microprocessor is approximately four times as fast as a commercial synchronous MIPS
R3000 in the same technology. Further, it is claimed that correction of a layout error
would deliver five times the performance of the clocked version.
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2.4 MiniMIPS — An asynchronous microprocessor

Energy efficiency is measured by the product E · t2, where E is the average energy of an
instruction execution, and t is the average cycle time. The asynchronous design had an
improvement in Et2 by a factor of 90. The microprocessor was designed for high speed
performance and special care to energy efficiency was not emphasized. The low power
advantage of asynchronous design was assumed to give a power efficient result. A
redesign of the MiniMIPS could deliver up to 400 times improvement in Et2 compared
to the implemented circuit. For details, see [Mart 01].
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3 Bitstream representation

A ∆Σ data converter is a popular data conversion technique which we will exploit.
∆Σ conversion utilizes oversampling to move the in-band noise to higher frequen-
cies and consists of a ∆Σ modulator, which produces a bitstream, and a low pass fil-
ter or decimator, which removes the out-band noise and downsamples the signal to
the Nyquist sampling rate. The ∆Σ kind of bitstreams is also known as Pulse-Density
Modulation (PDM). Pulse-Code Modulation (PCM) is the conventional digital mod-
ulation of an analog signal, usually presented as a binary code. The output of a ∆Σ
converter is PCM coded, the bitstream is rarely used and is decimated to PCM code
before any processing is done on the signal.

The bitstream cross-correlation advantage is significant with low oversampling ratios
[Land 07]. A ∆Σ modulator with high precision and a low oversampling ratio can be
challenging to make. A digital-to-digital six bit to one bit second-order modulator with
an Oversampling Ratio (OSR) of 8 and a normalized input range of −1 ≤ x ≤ 1 is
used to produce the bitstream in software. This resembles the modulator implemented
as a side project on the processed chip. The ∆Σ conversion technique is explained as
a Digital-to-Digital Converter (DDC), but the principles are similar to the Analog-to-
Digital Converter (ADC) and Digital-to-Analog Converter (DAC).

3.1 Delta-Sigma data converters

∆Σ data converters are used in an increasing range of modern electronic components
and the most widespread use is in data conversion. A ∆Σ converter can achieve very
high resolutions while using low-cost CMOS processes. Although the ∆Σ concepts
have existed since the early 1960s [Inos 62], it is only in the recent years the technique
has become common and popular because of the improvements in silicon technology.

The field of ∆Σ converters are large and a brief overview is given to get an under-
standing of the bitstream data representation. Two excellent books on the topic are
[Nors 97, Schr 05].
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3 Bitstream representation

3.1.1 Quantization

Quantization is the heart of all digital modulators and is the process of approximating
a continuous range of values or, in our case, a set of discrete values by a smaller set
of values. A ∆Σ modulator usually employ two-level quantization and a example is

1

−1

Analog/discrete input

Quantized output

1−1

Figure 3.1: Two-level quantization.

plotted in Fig. 3.1. The input range is normalized to −1 ≤ x ≤ 1 and the level spacing,
∆, is 2. The two-level quantizer simply outputs 1 if its input is higher than a threshold
at half of the input range and -1 if the input is lower. The quantized signal y is a linear
function of the input x with an error ε; That is,

y = x + ε (3.1)

When x is in the valid input range, the error is bounded by ±∆/2.

3.1.2 Delta-Sigma modulation

The ∆Σ modulator is the core of ∆Σ converters and produces a bitstream. A block
diagram of a first-order digital to digital ∆Σ modulator is shown in Fig. 3.2. The input
to the circuit, xi, feeds to the quantizer via an integrator. The quantized output feeds
back to subtract from the input. This negative feedback loop forces the average of
the output to track the average input. A difference between them accumulates in the
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3.1 Delta-Sigma data converters

Delay

QuantizerIntegrator

Figure 3.2: A block diagram of a first-order ∆Σ modulator.

integrator and eventually corrects itself. A analysis of Fig. 3.2 gives the output of the
∆Σ modulator,

y[i] = x[i− 1] + (ε[i]− ε[i− 1]) (3.2)

The output contains a delayed and otherwise unchanged replica of the input signal and
a differentiated version of the quantization error. A key aspect for the understanding
of ∆Σ modulators is noise shaping: The differentiation of the quantization error ε, sup-
presses it at frequencies that are low compared to the sampling rate, fs. The in-band
noise is attenuated and moved to higher frequencies, the process called noise shaping.
The output noise due to the quantization error is q[i] = ε[i]− ε[i− 1], as Eq. 3.2 shows.
A Z-transformation of the output noise gives the discrete frequency domain represen-
tation of the quantization error:

Q(z) = E(z)
(

1− z−1
)

(3.3)

where E(z) is the frequency-domain quantization error of the ∆Σ modulator. The factor
1− z−1 represents a high-pass filter; high frequency components of the quantization
error passes, while low frequencies are attenuated.

In the frequency domain, the power spectral density (PSD) of the quantization error is
found by replacing z by ej2π f / fs in Eq. 3.3, where fs is the sampling frequency.

Sq( f ) = (2 sin(π f / fs))2Se( f ) (3.4)

Se( f ) is the one sided PSD of the quantization error. By setting some conditions on
the input signal, the error ε is approximated with white noise and is uncorrelated with
the signal itself, thus Se( f ) is constant. The Noise Transfer Function (NTF) of a first
order ∆Σ modulator as a function of frequency is then proportional to Eq. 3.4. Fig. 3.3
shows the NTF for a first and second order ∆Σ modulator. A second order modulator
suppresses the quantization noise within the signal band, i.e. at low frequencies, more
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3 Bitstream representation

Figure 3.3: Noise transfer functions of a first and second order ∆Σ modulator.

efficiently. The drawback is that the second order modulator provides more gain at
higher frequencies, resulting in higher total noise power.

A ∆Σ modulator outputs a one bit representation of the sampled signal. The bitstream
is equivalent to the output of a multibit ADC/DDC, differencing in how the signal is
represented. A 1 bit representation is possible because the ∆Σ modulator oversamples
the signal to a higher extent than a multibit converter. The OSR is defined by the ratio
of the sampling frequency fs to the Nyquist frequency 2 f0,

OSR =
fs

2 f0
(3.5)

The bitstream is somewhat a serial representation of the signal of the cost of a higher
clock rate, hence the one bit label is a bit of a misnomer. The higher bit rate allows a
local average of the bitstream to represent the corresponding original sample.

The response of a ∆Σ modulator to a ramp input and a sinusoid is plotted in Fig. 3.4,
the local average of the bitstream approximates the input value.

The implemented converter includes a second-order ∆Σ modulator. The first-order
modulator described has the advantage of simplicity, robustness and stability, but the
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3.1 Delta-Sigma data converters

(a) Ramp input.

(b) Sinusoidal input.

Figure 3.4: Response of a second-order ∆Σ modulator.

acquired resolution is inadequate for most applications. A second-order ∆Σ modulator
can be created by replacing the quantizer in Fig. 3.2 with another copy of the first-
order modulator. This results in lower in-band noise and higher resolution. As in all
circuits including a feedback, instability in higher order ∆Σ modulators is a problem.
Modulators with a higher order than two can not simply be made by adding further
stages.

The in-band Signal-to-Quantization-Noise Ratio (SQNR) limits the resolution of a ∆Σ
modulator. Assuming that the input signal to the previously described second-order
∆Σ modulator is a sine wave of amplitude 1, the SQNR depends on the OSR [Schr 05]:

SQNR =
15(OSR)5

2π4 (3.6)

Assuming a uniform distribution of input signals, the relationship between the Effec-
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3 Bitstream representation

tive Number Of Bits (ENOB) of a ∆Σ modulator and the OSR is given by

SNR(dB) = 20 log(2ENOB) ≈ 6.02ENOB (3.7)

It is now possible to calculate the achievable ENOB of a second-order ∆Σ modulator
with an OSR of 8. Eq. 3.6 gives SQNR ≈ 34 dB, which gives ENOB ≈ 5.7, nearly 6-bit
resolution.

3.1.3 Decimation

The output of the ∆Σ modulator is a bitstream including the input signal and differ-
ent noise components. The bitstream is the encoding representation used in the cross-
correlator. At some point, the out-of-band noise has to be attenuated to reveal the result.
The purpose of the decimation filter is to remove noise outside the signal band and to
downsample the signal to the Nyquist rate. A simple decimation filter is the accumu-
late and dump circuit. If its input samples are xi occurring at the sampling rate fs and
output samples are yk occurring at the Nyquist rate 2 f0, then

yk =
1
N

Nk−1

∑
i=N(k−1)

xi (3.8)

where the decimation ratio N is the oversampling ratio OSR. OSR bits are summed and
averaged, decreasing the data rate, while increasing the bit size of each sample. This
filter has a frequency response based on a sinc function.

It has been shown that a close to optimum decimation filter function is a filter repre-
sented by (L + 1) products of sinc functions [Nors 97, p. 30], where L is the order of the
∆Σ modulator. Each filter in the decimator outputs a signal with a intermediate lower
oversampling ratio than the previous, eventually resulting in the chosen data rate.

3.2 Bitstreams

A simple way to get a understanding of how a bitstream represents a number, is to
decimate a sequence of samples. For simplicity, let N = OSR = 4 and the bitstream ex-
cerpt x = [0, 1, 0, 0, 1, 0, 0, 1] includes very little noise. The outputs from the decimator,
y1 and y2, can be found by using Eq. 3.8. y1 and y2 are as close to the input to the mod-
ulator as possible. Several other bitstreams would have produced the same output as
x. A real world example is much more complex, including different noise components
and higher order modulators and decimators. A detailed understanding of bitstreams
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3.2 Bitstreams

is not intuitive and the bitstream is most often decimated to PCM code without any
processing. The bitstream is just a step in the data conversion.

3.2.1 Robustness

The possibility of faults in digital circuits increases as transistor lengths decrease into
the nanometric scale. The bit sequence in most coding schemes are ordered. Bits in
a PCM coded value can e.g. be sorted from most significant bit (msb) to least signif-

(a) A PCM coded sinusoid with and without 20% of its bits inverted.

(b) A decimated bitstream coded sinusoid with and without 20% of its bits inverted.

Figure 3.5: Inverting of 20% of the bits randomly chosen in a PCM coded signal (a) and
in a decimated bitstream coded signal (b).
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icant bit (lsb), where the msb has more significance than the next. Inverting of the
msb will cause a large error in the signal. A bitstream does not have bits more or less
significant than the next, they all have the same weight. This makes a ∆Σ bitstream
more error prone than many other coding forms. The advantage is not evident at low
OSRs. Fig. 3.5 shows the inverting of 20% of the bits in a sinusoid with a resolution
of eight bits. The inverted bits are randomly chosen, Fig. (a) shows how large impact
an inversion of the msbs in a PCM coded signal has. The decimated bitstream plotted
in Fig. (b) is modulated with OSR = 8, before the same bits are inverted and the bit-
stream is decimated back to PCM code. This signal is also clearly distorted, but has
a better Signal-to-Noise Ratio (SNR) than the first example. The bitstream error toler-
ance is increasing with a higher OSR, which makes the coding form interesting in error
vulnerable processes or harsh environments.

3.3 Bitstream operations

Mathematical operations on a bitstream are not intuitive like operations on PCM coded
signals. Increasing a PCM coded value affects the less significant data bits, but a bit-
stream does not have lsbs. The bitstream operations needed are composed in the fol-
lowing sections.

3.3.1 Cross-correlation

The cross-correlation of two real discrete functions, f [i] and g[i], is defined as

y[i] = f [i] ? g[i] =
∞

∑
k=−∞

f [k]g[i + k] (3.9)

where the sum is over the appropriate values of k.

This means that for each shift in time, all the n samples defined by k have to be mul-
tiplied and summed together. We would typically need the calculation in real-time
and the multiplication has to be done n times the sampling frequency or in parallel.
Multiplication is a complex computation. The traditional cross-correlation principle in
hardware is shown in Fig. 3.6.

It is possible to calculate the running cross-correlation in a more efficient way by en-
coding the signal as a bitstream.
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3.3 Bitstream operations

Figure 3.6: Traditional cross-correlation principle. Picture taken from [Land 07]

Bitstream multiplication

Multiplication between bitstreams has a significant advantage compared to its multibit
counterpart and can be carried out using a basic logic gate. The rules of binary multi-
plication are the same as the truths of the AND gate. From Eq. 3.9 it is reasonable to
assume that we should AND the incoming bitstream with the template. Several logic
operations on ∆Σ bitstreams were derived in [Malo 91] and the AND gate was indicated
to be the bitstream equivalent to PCM multiplication. The calculations were performed
under the prerequisite of a modulator with input dynamic range from 0–1. The correct
gate in our case can be found by viewing the sigma-delta modulation in a probabilistic
term. The dynamic range of the implemented modulator is normalized to −1 ≤ x ≤ 1,
where x is the input. The probability that the output of the modulator, X, is 1 or 0 is
then given by P(X = 1) = (1 + x)/2 or P(X = 0) = 1 − P(X = 1) = (1 − x)/2,
respectively. The modulation of two input signals x and y is regarded as uncorrelated
and results in two bitstreams, X and Y. The XNOR of the two bitstreams results in:

P(X⊕Y = 1) = P(X = 0) · P(Y = 0) + P(X = 1) · P(Y = 1)

=
1− x

2
· 1− y

2
+

1 + x
2
· 1 + y

2

=
1
2
(1 + xy)

which indicates that operations which usually require complex digital circuitry, can be
done with a single logic gate when processing bitstreams.
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Bitstream summing

Bubble sort is a simple software sorting method. It repeatedly traverses an array of un-
sorted elements, comparing two elements at a time and swapping them if needed until
complete. This is the oldest and slowest sorting algorithm with a worst case complexity
proportional to n2, where n is the number of elements being sorted. Bubble sort of a
bitstream can be beneficial when implemented in hardware, in contrast to the software
version. Elements in the array are sorted in parallel when implemented in hardware
and has a worst case complexity proportional to n. The sorted array is the thermometer
code representation of the sum of the bitstream. Thermometer code is named so be-
cause it works similarly to a mercury thermometer. The mercury rises to a point and no
mercury is present above this point. Similarly in thermometer code, the number repre-
sented is the number of 1s appearing in succeeding order. A 4 bit example is listed in
Table 3.1.

Table 3.1: Thermometer code representation.

Thermometer base Decimal base
0000 0
0001 1
0011 2
0111 3
1111 4

3.3.2 Convolution

The convolution of two discrete functions, f [i] and g[i], is defined as

y[i] = f [i] ? g[i] =
∞

∑
k=−∞

f [k]g[i− k] (3.10)

where the sum is over the appropriate values of k. This is similar to the formula for
cross-correlation. If g′[i] = g[n− i] where 0 ≤ i ≤ n and n is the length of g, i.e. the
order of g′ is the reverse of g. We can now write Eq. (3.10) as y[i] = ∑∞

k=−∞ f [k]g′[i + k]
which is the same as Eq. (3.9). This means that the running cross-correlator can be used
in the large variety of applications a convolver gives us.
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3.3 Bitstream operations

Digital filter

A linear time-invariant (LTI) system transforms an input signal to an output signal
based on an algorithm. Convolution is the general formula for doing this for any LTI
system [McCl 03]. In contrast to an Infinite Impulse Response (IIR) filter, Finite Im-
pulse Response (FIR) filters do not require feedback. Any FIR filter can be realized by
∆Σ modulating the inverse sequence of the filter coefficients. A digital filter can give
superior behavior compared to an analog filter, i.e. less headroom and a steeper roll-off
factor, especially on ICs without the use of discreet components. The design of low fre-
quency filters are especially advantageous and convolution is often the only solution.

A low-pass filter is often used to remove high frequency noise. As an example, consider
the signal plotted in Fig. 3.7(a). The signal is the sum of two sinusoids with different
amplitude and frequency.

It is possible to extract the two original sinusoids of the signal by digital filtering. The
low-pass filter in Fig. 3.7(b) has a cutoff frequency which will attenuate one of the sinu-
soids. The result of convolving the filter with the input signal is plotted in Fig 3.7(c), the
time domain representation of the original sinusoid of interest is plotted together with
the filter output for comparison. The frequency response of the filter output shows how
the second sinusoid is attenuated.
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(a) Time and frequency domain representation of
the sum of two sinusoids.

(b) Time and frequency domain representation of
the digital filter.

(c) Time and frequency domain representation of
the low frequency sinusoid in the original signal.

Figure 3.7: Input signal (a), low-pass filter (b) and filtered signal (c).
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4 System overview

The system as a whole is the result of the collective effort between Daniel Mo [Mo 09]
and the writer. This chapter describes the full system, while implementation and oper-
ation of the cross-correlator is explained in great detail in Chapter 5. Developing and
implementing the ∆Σ converter part of the system (FIR filter, CIC interpolator, DSM,
CIC decimator in Fig. 4.1) and the later described clock divider is solely the work of
Mo.

The chip is interfaced with a simple Serial Peripheral Interface (SPI) bus, allowing
multibit inputs and outputs to be written or read serially. A block schematic show-
ing the main signal paths of the system is shown in Fig. 4.1. Multiplexers (MUXs)

External

bitstream

Cross-

Correlator

FIR

CIC

Decimator

CIC

Interpolator

DSM

SPI in

SPI in

SPI out

DSM

out
10 bits

10 bits

1 bit

1 bit

Figure 4.1: Block schematic of the system showing main signal paths.

allow for individual testing of each block, several blocks combined or the whole sys-
tem all together. Only the SPI in and out pins are used for the full signal path, giving
a simple interface where both input and output signals are assumed to be Nyquist rate
PCM encoded.
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4.1 Background of bitstream cross-correlation

The work in this thesis is based on the Letter “Running cross-correlation using bit-
stream processing” [Land 07]. The statement that the proposed cross-correlation tech-
nique is power efficient is based on a estimated transistor count of a traditional and a
bitstream cross-correlator. An appropriate Figure Of Merit (FOM) for digital microelec-
tronics is:

FOM = clockspeed · transistorcount

The FOMM of a multiplier based cross-correlator, as previously shown in Fig. 3.6, is de-
rived from different recent state of the art articles and is an optimistic estimate exclud-
ing control logic. FOMM is a function of the length of the cross-correlation window and
number of bits in each sample of the signal. The FOMB of a bitstream cross-correlator
is derived on the same principles and is a function of the OSR used to produce the
bitstream, in addition to the variables of FOMM. It is assumed that the ∆Σ bitstream
is already available. This rough transistor count will give an estimate on the rela-

Figure 4.2: Relative improvements of bitstream cross-correlation.

tive improvements of bitstream processing. Chapter 5 will show that a bubble register
length of 1024 is the upper limit of this implementation because of chip die area and,
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4.2 System building blocks

more importantly, the current drawn at the clock edges. Note that a smaller and more
power efficient solution is straight forward implementable by using standard cells. The
FOMM/B = FOMM/FOMB is a function of register length n. The bubble register length
is set to 1024 , giving n = 1024/OSR.

FOMM/B is plotted in Fig. 4.2. The bitstream advantage is significant for low OSR and
increases with the number of bits in the sample. High resolution ∆Σ modulators with
a low OSR can be difficult to make.

4.2 System building blocks

Fig. 4.3(a) shows the layout of the implemented chip. All elements from Fig. 4.1 are
identified, in addition to a clock divider. The clock divider distributes and divides the
higher SPI clock rate to the different computation blocks.

The chip is produced in STMicroelectronics’ 90 nm technology. The fabricator fills the
die with metal layers to fulfill certain density rules and the microphotograph of the
chip does not reveal much of the implemented structures. Fig. 4.3(b) shows clearly the
two top metal layers, which mainly are used to distribute the supply voltages and will
therefore outline each transistor in the design.

The building blocks in the system follow.

Serial Peripheral Interface

The implemented synchronous serial data link does not follow the naming conventions
and SPI interface standard named by Motorola, but was designed to interface as a slave
to another SPI device in master mode. Several of the chip inputs and outputs can be
used as the SPI standard Master Output, Slave Input (MOSI) and Master Input, Slave
Output (MISO) and there is no Slave Select (SS) to enable/disable the SPI interface on
the chip. During each SPI clock cycle, a full duplex data transmission occurs:

• the master sends a bit on the MOSI line; the slave reads it from that same line.

• the slave sends a bit on the MISO line; the master reads it from that same line

The chip SPI input is simply a register reading ten bits serially, clocking out ten bits in
parallel at a reduced speed. Similarly, the SPI output register latches ten bits in parallel,
clocking out ten bits in serial at an extended speed.

31



4 System overview

(a) Chip layout. Chip size is 1 ×1 mm.

(b) Microphotograph of the chip die.

Figure 4.3: Chip layout and microphotograph.
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Clock divider

The clock divider circuits provide operating frequencies for the different subcircuits.
The clock domains are derived from the chip input pin SPI clk. The SPI clk is used
for the increased SPI interface clock and is divided by ten to get the internal clock sig-
nal clk hi. This clock is used for the oversampled version of the input signal and the
bitstream. To achieve an oversampled version of the input signal, two other clock fre-
quencies are required. The clock domains are summarized in table 4.1 and the circuits
using them are briefly described throughout this section. The clocking scheme is rather

Table 4.1: The different on-chip clock domains.

Internal clock name Clock frequency Used in circuit
SPI clk 10 SPI in and out

clk hi
SPI in and out,

1 CIC interpolate and decimate,
DSM and cross-correlator

clk div4 1/4 FIR
clk div8 1/8 FIR, CIC interpolate and decimate

complex and will not be explained in further detail.

Finite Impulse Response filter and Cascaded Integrator-Comb interpolator

The chip input is expected to be at the Nyquist sampling rate and held for eight SPI clk
cycles and an upsampling of the signal is required before the ∆Σ modulation. The in-
coming signal is upsampled by zero padding and filtered to get a smooth interpolation.
Multi stage filtering allows for different filter specifications at different upsampling
rates. The total frequency response of the filters is the product of each of the filters’
responses.

The incoming signal is upsampled by a factor of two and FIR filtered. The FIR filter
has a sharper transition between the pass and stop band than the following Cascaded
Integrator-Comb (CIC) filter, but is more hardware demanding. The upsampling stage
will result in spurious signal components outside the signal band, known as aliasing.

The CIC filter in the second upsampling stage attenuates unwanted high frequency
components to a larger extent than the FIR filter. The CIC filter is considerably smaller
than the FIR filter and has a lower power consumption. The CIC filter constitutes the
completion of the upsampling and outputs a oversampled version of the input signal
with an OSR of eight.
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4 System overview

Modulation, bitstream operations and decimation

The input to the ∆Σ modulator is the oversampled Nyquist signal at a rate of clk hi. The
modulator produces the bitstream used for the cross-correlator and is implemented as
discussed in chapter 3.

The cross-correlator is fed with a bitstream at the rate of one tenth of the SPI clock,
clk hi. The bitstream can be read from the on-chip modulator or externally. The output
from the cross-correlator is a ten bit word including high frequency noise from the ∆Σ
noise shaping and can be decimated on-chip or read directly. The decimation filter is
of third order, as required to decimate the bitstream produced from the second order
modulator.
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5 CMOS Implementation

A running cross-correlator using bitstream processing has been implemented in 90 nm
technology. The theoretical bitstream operations were discussed in section 3.3. This
chapter will describe the implementation of the bitstream operations and system.

The implemented template register is 1024 bits and the circuit contains 1024 almost
identical slices. Implementation of the actual cross-correlation and bubble sorting are
equal for every slice and only the thermometer to binary decoder varies from one slice
to another. To manually implement this would be a time-consuming task and the possi-
bility for errors is large. SKILL is a LISP-like CAD system extension language and was
used for producing most of the schematic and layout of this system. The programming
language is poorly documented, most of the knowledge to produce both schematics
and layout with SKILL was obtained from “SKILL Language Reference” [SKIL 03] and
online user groups. The produced SKILL code makes it possible to generate various
register lengths and to choose the dimensions of the circuit, but the pre- and postlogic
for the layout are hard coded due to time limitations.

The circuit, with the exception of some of the control logic, is built up from NAND and
inverter standard cells delivered by STMicroelectronics. This is done because of limi-
tations in the available standard-cell library. The die area used by the cross-correlator
could be minimized by using other standard cells and/or customized cells. By using all
available standard cells from STMicroelectronics instead of only NAND and inverter,
the area was reduced by a factor of 0.56. The outcome of only using the two available
cells was in-depth knowledge about every building block, but using more gates led to
a less power efficient design.

5.1 Circuit overview

The cross-correlation is basically implemented in three stages. Bitstream multiplication
is done by comparing the two bitstreams with XNOR gates. Bitstream counting is done
by using bubble sort, which gives a thermometer coded result. The last stage is to
convert the thermometer code to its binary representation.
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The three stages are started and ended in the course of one clock cycle and parts of
the computation are done asynchronously, i.e. the clockless subcircuit relaxes the clock
frequency to be run at the bitstream frequency. The downside of doing this is the severe
timing restrictions which apply. One operation has to be completed before the next one
can start. Thorough simulations were done to ensure the proper sequential behavior
and generous time margins were added to each computation step. Fig. 5.1 shows
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Bubble register

Thermometer−to−binary

encoder

Output

stage

Sample

Set

 register

Bubble

 sort

xcorr

CLK

 bitstream
Incoming register

Template register

1024 bits

10 bits

Store bubble result

Start conversion

Figure 5.1: Circuit block diagram.

the block diagram of the circuit, excluding some output logic. Initially, the template
bitstream which the incoming signal will be compared against, is clocked into the 1024
bits template register. The incoming signal is shifted into the incoming register and
every bit in the two registers are multiplied by the XNOR gates at the start of the clock
cycle. The bubble register contains 1024 SR-latches which will hold the multiplication
results from the XNOR operation. The one-shot circuit controls the first important time
delay. The circuit gives a high output for a short time, long enough to complete the
multiplication and to latch the result into the bubble register. The pulse width is defined
by the time delay τ1 in Fig. 5.1. τ1 has to be long enough to allow the first stage to
complete, but should be kept to a minimum, maximizing the time available for the next
stage.

Stage two starts when the output from the one-shot circuit goes low. The bubble regis-
ter starts to sort the 1024 bit array, which is done asynchronously, still within the same
clock cycle. To make this possible, the duration of time delays are again the success
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5.1 Circuit overview

factor. Short time delays internally in the bubble register could cause loss of informa-
tion and long time delays will add up to an unbearable sorting time. The high values
in the register are shifted to the right, finally forming the result of the cross-correlation
presented in thermometer code.

The worst case sorting time depends on the internal time delays in the bubble register
and the array to be sorted. The sorting time and the time allowed for the first stage to
complete, τ1, restricts the maximum clock frequency of the whole circuit. The second
stage has to finish before the next rising clock edge.

The second stage is completed at the subsequent rising clock edge and the third compu-
tation stage is initiated. The inputs to the thermometer to binary encoder are an array
consisting of one unique transition from low to high. This transition is identified and
converted to the correct binary value. The outputs from the encoder are floating nodes
and have to be sampled after a short time delay defined by τ2 in Fig. 5.1. During the
lower half of the clock cycle, the output nodes of the thermometer to binary encoder
are precharged to logic high.

CLK

Stage 1:

Cross correlation 

and

latching of bubble register

Stage 2:

Bubble sort

Stage 3:

Thermometer to binary encoding

and

precharging

Thermometer to binary

encoding

Sample

binary result

Precharge thermometer to

binary output lines

Figure 5.2: Clock timing diagram, not in scale.

Fig. 5.2 shows a coarse timing diagram for each of the main computations in the cir-
cuit. All tasks are started every clock period, but left out for clarity. Notice the unused
time after the 2nd stage. This margin is similar to the previously presented margins for
synchronous logic.

The next sections present the different subcircuits and time critical computing steps are
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discussed. The time constraints are based on Monte Carlo simulations on the actual
schematics or, in most cases, models of the actual schematics.

5.1.1 Bitstream multiplication

The calculations in section 3.3.1 showed that the correct multiplication operator be-
tween to bits in a bitstream is the XNOR operation. Fig. 5.3 shows the two registers
and the bitstream multiplication between them. It is possible to check both registers for
correct behavior by reading the last bit.

Incoming register

Template register

CLK

 bitstream

template_enable

Dreg_out

tempreg_out

Figure 5.3: The bitstream multiplication.

The incoming signal is compared to the template and an array of bits will appear on the
XNOR gates. The multiplications are done during the time delay τ1 before the results
are latched into the bubble register. The multiplication could have been calculated in its
own clock cycle and the critical estimates regarding the time delay could be dismissed,
but this solution would require another latching step.

Timing – Presetting the bubble register

Shifting of the register and the logic XNOR operations have to be complete before the
next stage is initiated. In addition, the bubble register has to be preset with the com-
puted array. The time when the multiplication results are latched into the bubble reg-
ister is defined by the delay τ1 in Fig. 5.1. The ∆Σ bitstream is shifted in the bitstream
register on rising clock edge. τ1, has to be longer than the delay from the clock edge to
the last bubble register is set.

A model of one multiplication cell and one bubble sort latch was created and a Monte
Carlo simulation was executed. The Monte Carlo analysis generates a set of random
samples for process and mismatch parameters and simulates the system for each set.
The system as a whole is impossible to simulate with the data power available, insuf-
ficient memory is encountered during initial setup, even before the netlist is produced.
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5.1 Circuit overview

All driving circuits and component loads are carefully modeled. Resistance and capaci-
tance of wires were omitted. The goal of this simulation is to find an appropriate length
of the two delays:

τ1min Actual computation time for Stage 1
τ1 Allowed computation time for Stage 1

The length of the delay τ1min is simulated and an element with a delay τ1, where τ1 >
τ1min, is constructed.

The time from the clock reaches 0.9 ·Vdd to the output of the latch in the bubble regis-
ter reaches 0.9 ·Vdd is simulated 1000 times with process and mismatch variation. This
gives the time from rising clock edge, through the completion of the bitstream multi-
plication, to presetting of the bubble register. The number of simulations is a trade-off
between accuracy and time, 1000 simulations gives a good enough estimate of the time
delay. The simulation indicates an estimated mean µτ1min = 199 ps and an estimated
standard deviation στ1min = 20 ps. The simulation is plotted in Fig. 5.4 together with
the normal distribution Y ∼= N(µτ1min, στ1min).

Figure 5.4: Statistical analysis of the time delay from rising clock edge to the bubble
register is set.
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The normal distribution involves two parameters, µ and σ, where µ is the mean of the
distribution and σ is the standard deviation:

f (x | µ, σ) =
1

σ
√

2π
e−

(x−µ)2

2σ2 ,−∞ < x < ∞

Since the Monte Carlo simulates the system a large number of times with random pa-
rameters, the normal distribution is a good estimate of the probability distribution of
τ1min . The following calculations are based on simulations and estimates of the actual
values which are not explicitly addressed for better readability.

The actual delay is normally distributed, X ∼ N(µτ1, στ1) and is realized with inverters.
Simulation shows that the standard deviation for a delay in the relevant scope is similar
to τ1min. The same simulation indicated the correlation coefficient between the delays,
ρ ≈ 0.7. The correlation measures the direction and strength of the linear relationship
between two quantitative variables. The difference D = X − Y between the delays is
normally distributed, with mean and standard deviation:

µD = µτ1 − µτ1min

σD =
√

σ2
τ1 + σ2

τ1min − 2ρσ2
τ1σ2

τ1min

στ1=στ1min= στ1min

√
2
(
1− ρσ2

τ1min

) ≈ 28.3 ps

D ∼ N (µD, σD). The mean, µτ1, which results in 99.85% possibility for τ1 > τ1min is
calculated. Because D is one-sided, this is ensured when P (D < 0) = 100%− 99.7% =
0.003.

P(X < Y) = P (X−Y < 0) = 0.003

= P
(

D− µD

σD
<

0− µD

σD

)
= 0.003

= P (N(0, 1) < −2.75) = 0.003

Which implies:

−µD

σD
= −2.75

µD ≈ 78 ps

Finally, µτ is found:

µτ1 = µτ1min + µD = 199 ps + 78 ps = 277 ps
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5.1 Circuit overview

The bubble register will be preset when its control signal is high and start bubbling
when it is low. The output from the one-shot circuit in Fig. 5.1 goes high on the clock
rising edge and low after the predefined time delay, τ1. The delay has to be long enough
to allow completion of the bitstream multiplication and preset the bubble register. This
is fulfilled within a probability of 99.85% by implementing a delay with a mean of
277 ps.

The actual implemented delay of τ1 is simulated to have a mean µ = 344 ps and a stan-
dard deviation σ = 19 ps. Because of time restrictions when implementing the circuit,
the requirement to the delay was 1.5 < µτ1/µτ1min < 2 and ended quite randomly to
be µτ1/µτ1min ≈ 1.7. This allows a variation in τ1 of more than 5σD.

The fulfilled calculations and simulations show that the width of the one-shot pulse
gives enough headroom to always ensure that the bubble register is preset and is short
enough to maximize the sorting time in the next stage.

5.1.2 Bitstream summing

The number of high outputs from stage one need to be summed to complete the cross-
correlation. A standard approach to this problem could be to store the array of bits
and count them by shifting them out of the register. This would delay computation
and/or require a higher clock rate, resulting in a higher power dissipation. Another
way to sum the array is to sort all the high values to the right and then convert the
now thermometer coded array to its binary value. This sorting, even combined with
the cross-correlation, can be done in one clock cycle. The bubble register contains a
regular SR-latch register with an AND gate and a time delay as shown in Fig. 5.5. In

bubble_out_enable

Q1023

Figure 5.5: Continuous bubble sorter

addition, logic to preset the latches in the bubble register is implemented. At normal
operation, the input signal bubble out enable in Fig. 5.5 is grounded. Setting this signal
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to high, will bubble the data in the register to the output pin Q1023. The data can be
read and controlled for correct behavior with a high frequency oscilloscope.

Table 5.1 presents the SR-latch operation. The state of R = S = 1 will not fulfill the

Table 5.1: SR-latch operation.

S R Action
0 0 Keep state
0 1 Q = 0, Q = 1
1 0 Q = 1, Q = 0
1 1 Restricted combination

logic equation Q = not Q and is therefore a restricted combination. This state can also
cause a race condition, where the final state can not be predicted.

Considering ith bubble element, Q[i], the following pseudocode summarizes the behav-
ior of the bubble register:

while not sor ted :
for a l l bubble elements , i , in r e g i s t e r at once :

i f Q[ i ] > Q[ i + 1 ] :
swap (Q[ i ] , Q[ i + 1 ] )

The (i + 1)th bubble element will input and store a 1 only if its value is 0, Q[i + 1] = 0,
and its predecessor, Q[i], is 1. This results in a ripple of logic 1s from left to right in
the register. It is also possible to think of the sorting as a ripple of logic 0s from right
to left in the register. The circuit has a aesthetic and symmetric behavior which will be
thoroughly described throughout this section.

The bubble sort of a four bit bubble register is illustrated in Fig. 5.6. Four bit is enough
to demonstrate the different sorting operations. Fig 5.6(a) shows the initial state of
the bubble register. Here, the SR-latches are preset with the values from the bitstream
multiplication. The logic value of each node is indicated in gray. Only a logic 1 followed
by a logic 0 in the register will result in two high inputs to the accompanying AND gate
which will reset the latch originally valued at logic 1 and set the next. In other words,
the logic 1 is bubbled one latch to the right sequentially, i.e. without a clock. The next
bubble operation, illustrated in (b), involves bubbling of two bit since both high bits
have a consecutive logic 0. Note that the described behavior is explained in discrete
time; in reality each bubble will occur at slightly different times. The rightmost bit
in (c) has reached its stable state and the latch can be neither reset nor set. The last
unsorted bit will be bubbled in the next and final bubble operation. (d) visualizes the
final stable state of the bubble register. All inputs to the SR-latches are zero and all
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(a) Presetting the bubble register
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(b) 1st bubble operation done.

0 110

0 1 1 00 0

010

(c) 2nd bubble operation done.

1 100

0 0 0 01 1

000

(d) 3rd bubble operation done.

Figure 5.6: Sorting of a four bit array.

outputs are kept, meaning that the array is sorted and ready to be encoded. This array
is one example of the most time consuming patterns to sort. n − 1 bubble operations
are used to reach the final stable state, where n = register length.

The graph in Fig. 5.7 shows the outputs from a bubble register at a given time, t. The
data plotted are slightly simplified simulation results, to improve clarity. The plot is
valid for one of the cases in the previously discussed example and shows how the logic
1s will propagate through the bubble register as a wave, eventually filling the register
from right to left.

43



5 CMOS Implementation

Bubble register #

L
o
g
ic

 v
al

u
e

1

0

Q[i] Q[i+1] ...... ...Q[i+2]...

Bubble operation t+1

Bubble operation t

Figure 5.7: Asynchronously sorting logic values in the bubble register.

Timing – Bubble sort

The sorting is the most time consuming process and depends on the template bit length.
The transient response of sorting a ’1’ and fifteen ’0’ is plotted in Fig. 5.8. The ’1’ is
bubbled through the register until the sorted stable state is reached. The time delay
between each bubble is a combination of the time delay in the two inverters, the AND
gate and the latch set time seen in Fig. 5.6. Every bubble, except the first and the last,
takes 156.6 ps.

The time a value is kept in the SR-latch depends on the time delay, τ3 in Fig. 5.5. The de-
lay has to be longer than the difference in the latch set and reset time to avoid metasta-
bility in the latch. A short delay could cause one latch to be reset without setting the
next one. This delay is less defined than the previously calculated τ1. The difference
in the latch set and reset time has a mean of 5 ps with a worst case value of 11 ps. The
delay in the AND gate should be more than long enough to ensure stability in the latch,
but some bubble operations fail when running a Monte Carlo simulation on the bubble
register.

τ3 is realized with two inverters, in addition to the delay of the AND gate, and simula-
tion confirms the operation of the circuit. The delay time of one bubble operation will
limit the maximum operating frequency of the whole system. A four bit bubble reg-
ister was created to make the statistical analysis of the bubble sort possible. The time
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Figure 5.8: Transient response of a 16 bit bubble sort.

from the second and the third bit was measured with mean µ = 144 ps and standard
deviation, σ = 14.1 ps.

5.1.3 Thermometer to binary encoder

A straightforward and common approach to the encoding is to use a binary encoded
ROM. The 1024 bit thermometer code is encoded to a 10 bit binary value. The en-
coding is executed in the subsequent clock cycle after cross-correlation, in parallel to
computation of the next cross-correlation result. This relaxes the timing properties of
the encoder, but involves another latch stage to hold the thermometer code. The ther-
mometer code consists of a sequential number of 1’s corresponding to which number
it represents, hence the input to the encoder is an array consisting of one unique tran-
sition from low to high. This transition is identified by a row decoder, comparing two
consecutive values from the thermometer coded array. The selected row pulls down
the correct precharged output lines which constitutes the correct binary representation.
The output lines are sampled after a predefined time delay, τ2 in Fig. 5.1. This type
of row decoder selects multiple rows if a bubble error occurs, i.e. if the thermometer

45



5 CMOS Implementation

coded array is inconsistent. Several bubble error correction schemes are applicable at
the cost of increased silicon area, propagation delay and power consumption [Sail 07].
A bubble error in the bubble sorted array means that the sorting is incomplete and it
would be meaningless to implement bubble error correction.

Implementing the system with SKILL was especially beneficial regarding the thermome-
ter to binary encoder. The correct pulldown transistors were automatically placed ac-
cording to encoding conversion. Doing this manually would have been time consum-
ing and error-prone.

5.1.4 Clock buffers

Large clock buffers were used instead of a clock distribution network. Construction of
a clock tree without clock skew is challenging and clock edge time differences in the
flip flop register and the bubble register will result in corruption of data.

The clock buffers drive large loads and should have the right fan-out. Fan-out is a mea-
sure of the ability of a logic gate output to drive a number of inputs of other logic gates.
A gate driving h identical copies of itself is said to have a fan-out or electrical effort of
h. The driving gates in the clock buffers are inverters and the load is not an identical
copy of the gate. The electrical effort is then computed by h = Cout

Cin
, where Cout is the

capacitance of the external load and Cin is the input capacitance of the gate. Assuming
that polarity does not matter, the in- and output capacitances are proportional to the
gate sizes. With this assumption, estimates to the fan-out of the different clock buffers
are found. The buffers used in the implementation had an electrical effort between five
and seven, which is higher than the well known Fanout-Of-4 (FO4). A FO4 would have
given the shortest time delay, but smaller buffers were prioritized.

There will be a significant lag from when the first gate receives a clock transition to
when it is received at the last gate. The clock buffer drives many gates and long lines,
close to 5mm. A clock tree could prevent the delay, but clock skew could cause differ-
ent parts to receive clock transitions at different times. With knowledge of which gate
receives the clock transition first, the registers are implemented to function indepen-
dently of the clock transition delay. The registers will operate as intended by letting the
clock transition flow in the opposite direction of the data path. The wanted behavior
in a register is that a flip flop samples its input before the predecessor changes its out-
put. The template and incoming shift registers are designed with the clock transition
delay flowing in the opposite direction of the data. In the bubble register, the data and
clock transition delay flows in the same direction because of a design flaw. This can
potentially corrupt data.
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Current drawn and conductor widths.

The described clock buffers drive large loads, many gates and long conductor lines.
The current drawn at the clock edges was a concern at design time and thorough simu-
lations were performed to examine the performance. A simplified model, consisting of
a clock buffer driving an equivalent load, was created to execute the simulation. Sim-
ulation of the current flow from the clock buffer shows values around 55 mA on clock
edges.

A typical sheet resistance for the 90 nm process is R� = 70 mΩ/�. The conductor is
close to l = 5 mm long. Conductors wider than 4 µm are in this design impractical so
the widest conductors were chosen to w = 4 µm. Total resistance of the conductor is
then given by R = R�

l
w = 70 mΩ/�5 mm

4 µm = 87.5 Ω.

The conductor resistance should be modeled in order to get a more accurate simulation.
Resistances are placed in series in between the gates and the simulation is rerun. This
indicates a current spike of 33 mA.

The theoretical voltage drop over the conductor is then given by Ohm’s law U = RI =
87.5 Ω · 33 mA ≈ 2.9 V. Capacitances and a voltage drop on the conducting node will
in practice restrict and spread the current drawn and the lines are designed with a
width of 4 µm.

5.2 SKILL implementation

The use of SKILL for implementing the schematics and layout made it effortless to gen-
erate designs with different register lengths and outer dimensions. This made it easy
to explore different solutions and to make smaller designs which made simulations
possible.

SKILL is based on the artificial intelligence language Lisp and two different program-
ming notations are allowed:

• Algebraic notation used by most programming languages,
e.g. func(arg1 arg2 ...)

• Prefix notation used by Lisp, e.g. (func arg1 arg2 ...)

The algebraic notation style, or C-like syntax, is said to allow a novice user to quickly
learn to use the language, while the Lisp syntax allows expert programmers to access
the full power of the Lisp language. To demonstrate the difference, a short code snippet,
calculating a Fibonacci number, follows:
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Calculating a fibonacci number using algebraic notation.
procedure ( f i b o n a c c i ( n )

i f ( ( n == 1 | | n == 2) then
1

e lse f i b o n a c c i ( n−1) + f i b o n a c c i ( n−2)
)

)

Calculating a fibonacci number using prefix notation.
( defun f i b o n a c c i ( n )

( cond
( ( or ( equal n 1) ( equal n 2) ) 1 )
( t ( plus ( f i b o n a c c i ( d i f f e r e n c e n 2) ) ) )

)
)

All knowledge of the Lisp syntax was suppressed before coding of the SKILL scripts
commenced.

5.2.1 Schematics

The different building blocks of the schematic, except the thermometer to binary en-
coder, were drawn manually and consist of three main parts: (1) Prelogic, e.g. control
signals, buffers, delays. (2) A one bit slice, containing the bitstream multiplication and
bubble sort. (3) Postlogic, e.g. outputs, delays. A SKILL script assembles the building
blocks with the register length, n, as a parameter; the postlogic is placed, before n slices,
each slice with its unique pulldown logic, are generated and placed. The pulldown
logic corresponds to the binary representation of the placement of each slice. Finally,
the placing of the postlogic constitutes completion of the circuit. The SKILL script can
be summarized in pseudocode:

def AssembleSchematics ( length )
CreateCellView ( ’ c r o s s c o r r e l a t o r \ ’ + length + ’ b i t s ’ )
PlaceCellView ( PreLogic )
for x in range ( len ( length ) ) :

PlaceCellView ( S l i c e , x )
PlaceCellView ( PulldownLogic ( x ) , x )

PlaceCellView ( PostLogic , length )

The script places each slice in a consecutive line and the resulting schematic is quite
impractical, at least for long register lengths. The script is kept as basic as possible,
avoiding complicated array and bus structures, minimizing the risk of errors. The un-
handy format of the schematic is rather an advantage. Correct behavior is confirmed by
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generating a design with a short register length. Changes are not done in the generated
schematic, but in one of the three basic building blocks.

5.2.2 Layout

The layout was generated in the same way as the schematic, but differs in the way
the slices were placed to fit within the given dimensions. The slices were placed in
a serpentine pattern and every other row rotated 180◦ to ease the routing of supply
voltages as seen in Fig. 5.9. The script to generate the layout has the same structure
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Figure 5.9: Slices placed in a serpentine pattern.

as the schematic script, the same three building blocks are placed and connected to
each other. The essential difference is how the slices are placed because of the physical
boundaries an actual implementation involves. Notice the different length of the wires
in Fig 5.9. The largest challenge was to dynamically calculate the overall length as well
as the length before a turn in each wire. Additionally, the vertical distance between
the rows depends on the register length because the output lines of the thermometer
to binary encoder are placed at the bottom of each slice. A small offset between two
wires would most likely be intercepted by Design Rule Check (DRC) and a large offset
would most likely be noticed by the layout versus schematic check. Generation of a
circuit with a small register length and manual inspection of each connection was again
an important debugging method and at the same time a significant source to layout
optimization.

An example SKILL script can be found in Appendix B, the script generates l bits 4 to 1
MUXs from a slightly modified 1 bit 4 to 1 MUX, where l is the function parameter. The
result of running the script with parameter l = 10 is also shown in the appendix.
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5.3 Clock cycle time properties

The cross-correlator is a hybrid of synchronous and asynchronous design. This com-
plicates a speed and power performance analysis and some concepts are established
before the bitstream cross-correlator performance is evaluated in section 6.4.

5.3.1 Maximum clock frequency

Bitstream multiplication, presetting of the bubble register and the sorting will be done
in one clock cycle and are the critical and most time consuming operations. The time
delays bound to these operations will restrict the maximum clock frequency. The mean
time properties of interest are:

τ1 = 344 ps
tbubble = 144 ps

n = 1024
Oworst case = n− 1 = 1023

τ1 is the time disposed for the bitstream multiplication and time for presetting the bub-
ble register. tbubble is the time delay for one bubble operation. The register has a length
n and the worst case number of sorting operations is given by Oworst case.

The maximum clock frequency is determined by the time delay of the bitstream multi-
plication, presetting of the bubble register and the worst case sorting time:

fmax =
1

tpreset + tbubble ·Oworst case

=
1

344 ps + 144 ps · 1023
≈ 6.8 MHz

This result gives an upper limit for the clock frequency and should not be confused with
speed performance, although a performance analysis can indirectly be concluded from
this number. One of the challenges in asynchronous design was identified in section 2.3
as performance analysis and the comparing of performance against traditional designs.
The performance of the MiniMIPS, discussed in section 2.4, was measured in MIPS and
the comparison with its synchronous counterpart was fairly trivial.
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5.3.2 Computational performance

All available references to multiplication and summing operations in hardware is be-
tween PCM coded numbers and the bitstream cross-correlator performance should be
converted to operations between Nyquist rate signals. Each clock tick initiates bit-
stream multiplication of 1024 bit and summing of this result. The Nyquist rate is given
by fclk hi/OSR and the Nyquist template rate by n/OSR.The Nyquist rate multiplica-
tions per second is then given by

Nyquist rate multiplications per second =
fclk hi

OSR
· n

OSR
=

fclk hi · n
OSR2 (5.1)

where fclk hi is the cross-correlator clock rate and n is the length of the bubble register.
Each cross-correlation result is the sum of n multiplication results and the Nyquist rate
cross-correlation is given by

Nyquist rate cross-correlations per second =
fclk hi

OSR
, (5.2)

which is independent of the bubble register length since the summing is done asyn-
chronously, at the speed of the Nyquist rate. Substituting the system parameters, fmax =
6.8 MHz, OSR = 8 and n = 1024, gives

Nyquist rate multiplications per second ≈ 109 M
Nyquist rate cross-correlations per second = 850 k

The operating frequency used is the theoretical absolute maximum speed assuming
that the time delays are equal to the mean simulation results. This result will not be
tested as the measurement setup does not allow for such high frequencies.
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There were two alternatives to measure on and operate the circuit, and the use of a mul-
tifunction Data Acquisition module (DAQm) from National Instruments was initially
chosen. The high-level programming language Python was used to implement the ac-
companying C library. This solution was at first successful, but rather complex. After
execution of the main measurement tests, it was clear that the circuit did not work as in-
tended. New tests were accomplished to understand when and what went wrong, but a
lot of effort was used to operate and to understand the acquisition module. The second
measurement setup was chosen, the use of a microcontroller (µc ) module connected
to a computer. The µc ’s IO pins and SPI interface offered a good way to communi-
cate with the circuit. Firmware to the µc was customized, a converter Printed Circuit
Board (PCB) was milled and computer software was written.

6.1 Measurement setup

6.1.1 Printed Circuit Board

The CMOS die is packed in a 48 pin Thin Quad Flat Pack (TQFP). The TQFP48 package
and all other components used are Surface Mounted Devices (SMDs). In addition to
the obvious communication between the chip and the measurement tool of choice, the
PCB provides level shifting of voltages and distribution of power supply lines.

The binary logic levels are represented by different voltage levels by the chip, acqui-
sition module and the µc and are summarized in table 6.1. Level shifters are used

Table 6.1: Typical binary logic levels

Logic level Low voltage High Voltage Supply voltage (VDD)
Chip CMOS 0 V – 0.5 V 0.5 V – 1 V 1 V
DAQm TTL 0 V – 0.8 V 2 V – 5 V 5 V
µc TTL 0 V – 0.8 V 2 V – 5.5 V 3.3 V

to translate the binary values to the correct voltage levels, depending on the supply
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voltage provided. This ensures right voltage levels independent of the measurement
module.

Three voltage regulators are needed to drive the chip and the level shifters on the PCB.
The chip requires two different voltage supplies, both 1V. The on-chip cross-correlator
is given its own power supply to secure operation and to make current measurements
possible. Control logic and the other project on the chip is powered by the second 1 V
power net. The third power net is reserved for the chip output level shifters, shifting
the logic high voltage to 3.3 V. All input and outputs are assembled in a 40 pin flat
cable connector. Fig. 6.1 shows the fully assembled PCB and the different components
are identified.

Figure 6.1: The fabricated PCB.
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6.1.2 Measurement setup 1: Multifunction DAQm

The PCB was designed to function with the DAQm and a flat cable easily connects the
two systems. Power supply, clock and input/outputs (I/Os) were controlled by the
DAQm. The accompanying software allows graphical programming for measurement
and automation, but was quickly rejected. A generic platform, not bound to the re-
strictions of a graphical interface, was preferred. We chose to implement the DAQm C
library. A python back-end module was implemented, handling low level operations
between the computer and the DAQm. The python front-end ensured a simpler user
interface.

This solution worked well when outputs were the expected results from the inputs, but
debugging of unexpected behavior was difficult and time consuming.

6.1.3 Measurement setup 2: Microcontroller development board

Other projects with similar I/O schemes have successfully accomplished measurements
with use of Olimex Header Board Atmel SAM7-256. The module is powered and pro-
grammed through the USB port and I/Os are easily connected to 20 pin connectors.
Generic firmware framework for the µc was adapted and a 40 pin to 2*20 pin PCB
adaptor was cut. An excerpt of the firmware can be found in Appendix C. The SPI on
the µc made communication to the chip intuitive and nearly trivial.

The µc is accessed from the computer through a virtual serial port link, where raw
text commands are issued. An excerpt of the Python chip library can be found in Ap-
pendix D. The commands are interpreted on the µc and the requested action is fulfilled.

This solution is highly recommended for similar projects and measurement schemes.
Fig. 6.2 shows the adaptor, µc and fully assembled measurement setup.

6.2 Initial measurement tests

6.2.1 D flip-flop registers

The last bit of the template and incoming register can be read. By clocking in random
bit sequences, both registers were confirmed functional. This does not only confirm the
registers, several other elements in the circuit function. The chip input clock, SPI clk
ticks ten times faster than the internal divided clock, therefore each bit in the registers
are read on the output ten times. This confirms the functionality of the clock divider.
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(a) PCB to µc adaptor and µc .

(b) The preferred measurement setup, PCB, adaptor and µc

Figure 6.2: Measurement setup 2.
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Clock buffer sizes and conductor widths were discussed in section 5.1.4. The registers
were read at the highest speed supported by the µc and this confirms the buffer and
conductor dimensions.

The PCB layout, including different voltage nets and voltage up/down translations, is
confirmed and the measurement tool functions as expected.

The initial test confirms the operation of a basic flip-flop register, but more importantly,
the test verifies the operation of large parts of the system as a whole.

6.2.2 Cross-correlation

The result from the cross-correlation is a ten bit number from 0 to 1023 depending on
how alike the template and the incoming signal are. The first test revealed that the
cross-correlator did not operate as intended. Different measurements were run to figure
out what went wrong. These are presented chronologically in the following sections to
show the chain of thoughts in the debugging process.

From maximum cross-correlation to zero to maximum again

By storing zeros in the template and incoming register, the output from the circuit is
expected to be 1023. The value should decrease to zero by clocking ones in to the in-
coming register. At this point, 1024 zeros are again clocked in to the incoming register
and the output should increase to 1023 again. The result is plotted in Fig. 6.3 together
with the expected output. This is an important result and several conclusions about
the circuit can be made. First of all, almost all of the first 1024 cross-correlations are
correct. All the equal bits are rightmost in the the bubble register, keeping in mind
that the bubble register sorts ones to the right. Therefore, no sorting has to be done.
The thermometer coded output is encoded to the correct binary value and the value is
clocked out through the SPI register.

In the next phase, the equal bits are leftmost in the register and have to be sorted. This
fails in most cases, but results in some correct single values, a couple of threshold levels
and a row of correct values. This may just be enough to get some useful results from
the chip and will be tested later.

This test reveals that the encoder seems to work as expected and that something went
wrong with the bubble sort.
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Figure 6.3: The faulty cross-correlation of 1024 bit.

Bubble out enable

A pin on the chip makes it possible to bubble out the content of the bubble register.
Debugging asynchronous circuits was previously identified as a challenge, because
it always runs at full speed. The minimal theoretical time between two bubbles was
simulated to be 144 ps ≈ 7 GHz and the available measurement instruments are not
adequate for such high frequencies. Ignoring these facts, measurements show a trace
of varying widths as the input varies. Unfortunately, the resolution is far from high
enough to conclude if the data is distorted or not at this point.

Shifting a constant number of bits through the bubble register

If a constant number of bits in the template and the incoming register are equal, the
output should stay constant. By clocking data into the incoming register, satisfying
constant equality in the registers, the number of times a bit has to be bubbled will de-
crease. Fig. 6.4 shows the result from shifting two bits through the register. Clearly
something goes wrong when one or several bits have to be bubbled through the entire
bubble register. The figure verifies that the output is correct when the number of bub-
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6.2 Initial measurement tests

Figure 6.4: Faulty shifting of two bits through the bubble register.

bles are low enough, and in this case less than 552 times of bubbling. Similar results
are obtained when sorting a higher number of bits. Remark that the correlation factor
seems to be offset by three.

There could be several sources of errors, and can potentially be differences in the pull
up/down transistors or in the power supply. If the pull down transistors are stronger
than the pull up transistors, the width of the spike being sorted will become narrower
for each bubble, eventually disappearing completely. If the pull up is stronger, it could
result in spikes being merged together. Both cases will end in missing data.
Large current draw at the clock edge was a concern at design time. The bubble register
was initially 512 bits long, but unrealized space on the die and the fact that a new
circuit layout could be automatically generated in seconds, resulted in a 1024 bit bubble
register. Adjustments, such as wider conductors and dedicated power supplies, were
implemented to provide the extra current needed.

In elucidation of the design flaw revealed in section 5.1.4, the most likely reason for the
unexpected behavior is a slow falling transition in the bubble sort start tick. The first
latches in the bubble register start to bubble before the next latch is ready. The result
in Fig. 6.4 indicates that the bubble enable signal transition is to slow in almost half the
bubble register. The transition seems to get faster than the bubble operations after this
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point, which gives hope that the last part of the bubble register functions as intended.

There is no straight forward hardware solution to only utilize the last part of the bubble
register, but the µc can contribute to successful on-chip cross-correlation at the cost of
speed.

6.2.3 Exploiting the functioning part of the bubble register

After numerous lost battles, a solution was found. The working part of the circuit can
be used with help from the µc . The bubble register is now constrained to 512 bits, even
though the working part of the bubble register is somewhat higher. This gives a PCM
output of 9 bits. To utilize the second half of the bubble register, the first half can not
contribute. Different values in the template and the incoming register provides that the
bubble register is preset to zero, meaning no contribution. It is not possible to set any

Figure 6.5: The functioning part of the bubble register can be used by storing different
values in the first part of the template and incoming register, showed in gray.

other than the first bit in the template and the incoming register. This means that a 1024
bit sequence has to be shifted through the incoming register for every new bit and that
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the bitstream in the incoming register has to be stored on the µc . The chip template now
has to consist of the actual 512 bit long template and 512 ones, requiring the incoming
bitstream to be zero padded. The gray part in Fig. 6.5 illustrates the non-contributing
part of the register, while the rest of the figure represents the functioning part of the
cross-correlator. The lower part of the figure shows the bit pattern to be shifted into the
incoming register to obtain the next result.

The solution is coded in the µc in such a way that the computer operations are the
same as before. The only differences are reduced speed and template length. The two
previously presented tests are rerun to confirm the bug fix.

Bugfixed; from maximum cross-correlation to zero to maximum again

The script on the computer sets the template length to 512 on the µc . This enables the µc
to shift in the data to the on-chip incoming register as described in Fig, 6.5. The expected
chip output is a cross-correlation result of 512 decreasing to 0, before increasing to 512
again. The Fig. 6.6 shows the chip output, which this time corresponds to the expected
ideal output.

Figure 6.6: The correct cross-correlation of 512 bit.
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Bugfixed; shifting a constant number of bits through the bubble register

Fig. 6.7 confirms the shifting of two bits through the register, this time with an offset of
two. This offset seems to be constant when the input is constant, but lsb errors occur in
other cases and will not be corrected. This test reports the cross-correlator fit for duty

Figure 6.7: Correctly shifting two bits through the bubble register.

and the originally planned tests can take place.

6.3 Bitstream cross-correlation

The cross-correlation of two sinusoids will be the first chip benchmark. The chip bit-
stream cross-correlation result is compared to the software cross-correlation on the orig-
inal PCM coded sinusoid, which gives a good approximation of the bitstream cross-
correlation SNR.

The next chip test shows how a pattern is recognized in a noisy and distorted signal.
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6.3 Bitstream cross-correlation

6.3.1 Two sinusoids

A sinusoid with a frequency of 1 Hz is converted to a bitstream in software. The tem-
plate register is preset with one period of the sinusoid and the cross-correlator is fed
with the data. The raw chip output is plotted in Fig. 6.8. The signal is yet to be

Figure 6.8: Raw chip output.

decimated, high frequency noise has to be attenuated before comparing it to the ideal
cross-correlation result. The y axis is the actual equal number of bits in the signal and
the template, where the value 512 indicates two completely equal signals.

The bitstream and ideal cross-correlation results of two sinusoids are plotted in Fig. 6.9.
The “Ideal output” is the mathematically correct cross-correlation between the two
original high resolution PCM coded signals. Both cross-correlation results are normal-
ized. The 4th peak is enlarged to show the cross correlation error when the input signal
is changing rapidly.

The error e of the bitstream cross-correlation is found by subtracting it from the ideal
version of the result. Fig. 6.10 shows that the worst case error is approximately -23 dB.
The SNR is found to be

SNR = 20 log 10
(

Aideal

Ae

)
≈ 25.8 dB (6.1)

where A is the Root Mean Square (RMS) value of the signal x of length n given by

A =

√
1
n

n

∑
i=1

x2
i (6.2)
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Figure 6.9: Cross-correlation results of two sinusoids.

The SQNR of a second-order ∆Σ modulator was calculated in subsection 3.1.2 to be
34 dB and the SNR of the cross-correlation seems poor. The template used was one
period of a sinusoid, created to fill the template register. This means that the input
signal has a small change in the amplitude between each sample and more noise than
expected is introduced. The SNR of the modulated signal is 20 dB, the cross-correlation
result has less noise than the bitstream itself.

To confirm that the cross-correlation does not contribute any noise, a new sinusoid was
created with the correct OSR and bitstream cross-correlated with a longer version of
itself. The Fast Fourier Transform (FFT) of the decimated result, plotted in Fig. 6.11,
shows that the noise components are attenuated with 33 dB, which corresponds to the
expected noise in a second-order ∆Σ modulator.

The results confirm the theoretical bitstream cross-correlation calculations derived in
section 3.3; the bitstream cross-correlation does not contribute significant noise.

A lesson learned is the importance of using the correct OSR when modulating the bit-
streams, especially when the input is a noiseless sinusoid. The sinus with the higher
sampling rate leads to in-band idle tones and a lower SNR was achieved. The length
of the template register is fixed and the OSR of eight can only be complied for a lim-
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6.3 Bitstream cross-correlation

Figure 6.10: The error between bitstream and ideal cross-correlation.

Figure 6.11: FFT of the decimated bitstream cross-correlation result.

ited set of templates. Templates used in further tests of the chip will be modulated at
the sampling rate that leads to a template length of 512 bits. A possible lower SNR is
accepted in exchange for real world examples.

Decimation

A first order decimation filter written in software is used for the low pass filtering of
the signal. OSR samples are simply summed and averaged to form the Nyquist rate
result. Section 3.1.3, “Decimation”, stated that the bitstream from a modulator of order
L should be decimated with a filter of order (L + 1). First order filtering of the output
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from the second order modulator would have given a coarse result. First order filtering
of the chip output gives a good result because of the cross-correlation operation. A
higher order decimator gives a slightly smoother result. The cross-correlation operation
seems to attenuate the high frequency noise, which is evident on the signals FFT. The
frequency response of a bitstream and a bitstream cross-correlation result is plotted in
Fig. 6.12.

Figure 6.12: The FFT of a bitstream and a bitstream cross-correlation result.

6.3.2 Pattern recognition

One application of cross-correlation is pattern recognition, e.g. to identify a specific
pattern received over a communication channel. The specific pattern is stored in a
template and cross-correlated with the received signal. The template can be identified
in the signal even if the signal is, to a certain extent, distorted and noisy. The amplitude
of each sample in the cross-correlation signal is a measure of how much the received
signal resembles the template signal at that location.

Consider the template and signal plotted in Fig. 6.13. The template is derived from
the signal before distortion and is the spike, without noise, around 0.6 s in Fig. 6.13(b).
Comparing the template and the signal reveals that the signal amplitude has been cut
and white noise is added. This template and signal will be the first real world test for
the bitstream running cross-correlator.

Both signal and template are modulated to bitstreams in software and fed to the cross-
correlator, the raw chip output is plotted in Fig. 6.14. The raw chip output is very
noisy and it is hard to imagine that the cross-correlation has identified the searched
pattern. The first order decimated result is plotted in Fig. 6.15. The PCM time domain
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(a) A generic template. (b) A signal received over a noisy channel.

Figure 6.13: The pattern (a) to be recognized in the signal (b).

representation of the two signals were cross-correlated in software, named Ideal output
in the figure, for comparison.

The pattern searched for is located as evident spikes and the chip result is close to the
ideal cross-correlation. Cross-correlation of the none noise version of the input signal
is performed in chapter 7.
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Figure 6.14: Raw chip output.

Figure 6.15: Cross-correlation result of the template and signal in Fig. 6.13.
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6.4 Power consumption

Measuring pins on the PCB were intended to provide an easy method to measure the
current drawn by the on-chip cross-correlator. This measuring scheme turned out to
introduce enough noise on the supply net to corrupt the cross-correlation result. An im-
provised solution which included scraping off conducting lines on the PCB, soldering
and even gluing made it possible to measure the current before the voltage regulator.
Subtracting the current used by the voltage regulator gives the current drawn at the 1 V
power supply.

The cross-correlation power dissipation depends on the clock speed, which is con-
trolled by the µc SPI clock. Each package of data is sent over the SPI at this speed,
but is reduced if the µc has other tasks to accomplish, i.e. write results to the Uni-
versal Serial Bus (USB) buffer. A special µc method was written to ensure the correct
cross-correlation clock frequency, the actual clock frequency was confirmed with an
oscilloscope.

The largest measuring uncertainty, after securing a stable clock frequency, is how the
current drawn is affected by the non functioning part of the bubble register. A rerun of
the test where the cross-correlation output was expected to decrease from 1023 to 0 and
then increase to 1023 again, while measuring the current, reveals that the dissipated
power is almost proportional to the expected cross-correlation result. This indicates
that measured power dissipation is a good approximation to the power dissipated by
the entire 1024 bit cross-correlator.

Figure 6.16: Current consumption at clk hi = 18.8 kHz.

69



6 Measurements

The lowest possible SPI clock frequency is 188 kHz, resulting in the internal clock fre-
quency, clk hi = 18.8 kHz. A digital multimeter is connected to the computer and mea-
sures the current drawn at constant intervals. A large capacitance is connected between
the input to the regulator and GND to even out the current drawn from the power sup-
ply over time. The script measuring current is started before the cross-correlator is fed
with a sequence resulting in a output from 1023–0–1023 over and over at a constant
frequency. The voltage supply is 1 V. The measured current is plotted in Fig. 6.16. The
small increase in power consumption at the sixth sample is caused by setting the two
bitstream registers. The consumed power is proportional to number of equal bits in the
two registers, which confirms that the power consumption is signal dependent. The
static power consumption is high compared to the dynamic at this operation speed,
Pstatic = 0.65 mW. The mean power consumption while operating the cross-correlator
is P = 0.73 mW. This gives Pdynamic = P− Pstatic = 0.08 mW when clk hi = 18.8 kHz.
The overall power consumption was found to be the sum of the constant static power
and the dynamic power which was dependent on the number of gates actively switch-
ing.

The same measuring scheme is repeated, doubling the clock frequency each time. The
results are summarized in Fig. 6.17.

Frequency P
(kHz) (mW)
18.8 0.73
37.5 0.85
75.0 1.1

150.0 1.5
300.0 2.3
600.0 3.4
960.0 5.1

Figure 6.17: Measured mean power consumption at different frequencies.

The power consumption is as expected linear to the clock frequency. Comparing the
power consumption presented in the paper in Appendix A with Fig. 6.17 illustrates
an important advantage of asynchronous systems, but an issue regarding performance
analysis. The power dissipation presented in the paper is measured when process-
ing real data and is somewhat lower than the power dissipated during this measuring
scheme. The measurements from this section attempts to cover the average power dis-
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sipation at an average computational load which gives a good basis for comparison.

6.5 Performance

Different properties of the bitstream cross-correlator are discussed and compared to
similar available hardware solutions. The bitstream cross-correlator efficiency depends
on an available bitstream with a low OSR and a decent resolution. This can be the
case in an application where a sensed analog signal is modulated and the bitstream is
extracted before decimation. The bitstream cross-correlator is compared to an 8-bit µc .
A bitstream with a resolution of 8 bits is hard to create with a second-order modulator
with such low OSR. All input and outputs of the bitstream cross-correlator are assumed
to be oversampled in the following comparisons.

6.5.1 Power performance

The implemented circuit is intended to be a proof-of-concept and no power considera-
tions were taken at design time. The efficiency of the bitstream cross-correlator is com-
pared to a high performance, low power, 8-bit µc , namely the Atmel ATmega48PA.
The data of interest are extracted from the ATmega48PA data sheet and summarized in
table 6.2. The power consumption numbers for the ATmega48PA are measured with all
peripherals turned off, even the clock lines to those units are disabled, and is the typical
power consumption at the given speed and supply voltage.

Table 6.2: ATmega48PA properties of interest.

Power consumption 20 MHz, 5.5 V 57 mW
Power consumption 15 MHz, 4 V 20 mW
Throughput Up to 16 MIPS at 16 MHz
Load indirect 2 clock cycles
Multiply unsigned 2 clock cycles
Add two registers 1 clock cycle
Branch if not equal 1 / 2 clock cycles (2 if true)
Relative jump 2 clock cycles
Increment 1 clock cycle

The bitstream cross-correlator Nyquist rate multiplications per second were in Eq. 5.1
found to be fclk hi · n/OSR2 = 16 fclk hi. A clock rate of 960 kHz yields 15.36 M multipli-
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cations each second with a power consumption of 5.1 mW. µc instructions for multi-
plying in a loop could be:

L1:
Multiply data 2 clock cycles
Relative jump L1 2 clock cycles
One multiplication loop 4 clock cycles

This requires that the data is written and read to the correct registers in between µc
operations. The µc power consumption is not linear to the clock frequency, a frequency
of 15 MHz is chosen for this comparison, revealing multiplication results four times
slower than the bitstream multiplications. ATmega48PA performs 3.75 M multiplica-
tions each second with a power consumption of 20 mW. The Figure Of Merit for this
comparison is given by

FOM = (number of operations)/power dissipated. (6.3)

This FOM is not accurately when comparing calculations at different clock frequencies.
Table 6.2 shows that an increase in operation speed requires an increase in the power
supply voltage, thus dissipating more power per operation. The chosen FOM is easily
extractable from the µc ’s data sheet and gives an rough underestimate at different
operation speeds. The power dissipation profit using bitstream multiplications is then
given by:

FOMB/FOMµc =
15.36 M
5.1 mW

/
3.75 M
20 mW

≈ 16 (6.4)

The bitstream cross-correlator seems in this case to use almost 16 times less power than
a low power, multiplication effective µc .

To complete the cross-correlation, the multiplication results have to be summed. The
bitstream cross-correlator sums the 1024/8 = 128 multiplication results in the cross-
correlation window asynchronously. The Nyquist rate cross-correlations per second
were in Eq. 5.2 found to be fclk hi/OSR = fclk hi/8. A clock rate of 960 kHz yields 120 k
cross-correlations each second with a power consumption of 5.1 mW. µc instructions
for cross-correlating in a loop could be:
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L1:
Reset result register 2 · 1 clock cycles
Reset inner counter 1 clock cycle

L2:
Load template 2 clock cycles
Increment counter 1 clock cycle
Multiply data 2 clock cycles
Accumulate 16-bit result 2 · 1 clock cycles
Compare counter 1 clock cycle
Branch not equal L2 2 clock cycles
Relative jump L1 2 clock cycles
Inner loop 10 clock cycles
Outer loop 5 clock cycles

To complete one cross-correlation result, the inner loop, L2, has to execute 128 times and
the outer loop,L1, one time, resulting in 1285 clock cycles per cross correlation result.
To match the bitstream cross-correlator speed, the µc has to run at 154 MHz which is
not possible. The highest clock frequency is 20 MHz, dissipating 57 mW, resulting in
almost 16 k cross-correlations per second. The power dissipation profit using bitstream
cross-correlation is then given by:

FOMB/FOMµc =
120 k

5.1 mW
/

16 k
57 mW

≈ 84 (6.5)

The bitstream cross-correlator is designed to perform cross-correlation, while the µc
is a generic platform capable to perform any calculation. The result is promising and
the implemented chip is worthy to be compared to a more specific Nyquist rate cross-
correlator, which is not done in this thesis. Minimizing the power consumption was
not an issue at design time. The area used for the cross-correlator could almost be
halved by using standard cells provided by the factory. A halved area will possibly
halve the gate capacitance which will have a great effect on both static and dynamic
power dissipation.

6.5.2 Speed performance

The upper speed limit for the bitstream cross-correlator in this implementation, seems
to be around 960 kHz. The previous section stated that a µc can perform the same
computational load with a clock frequency of 143 MHz. The µc has a maximum clock
frequency of 20 MHz and can maximum compute the cross-correlation result 7.5 times
slower than the bitstream cross-correlator.
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If the speed limit on the implemented chip is the bubble time, the statistical simulation
of the bubbling would be 40σ from the actual delay. The most probable reason for the
speed limit is the high current drawn at the clock edges. Large clock buffers cause noise
at the power supply even at low frequencies. Again, the use of standard cells would
have improved operation. The many long registers in the design require large clock
buffers, but a more clever solution can probably spread the current drawn out in time.

The acquired clock frequency is most likely not the limitation when processing real-
time data, the register length confines the template length. The maximum Nyquist rate
signal is given by 960 kHz/8 = 120 kHz, this gives a template length of 1 ms. A more
applicable Nyquist rate could be 250 Hz, giving room for a template of more than 0.5 s.
This sample rate is suitable when sampling heartbeats, which enables the implemented
bitstream cross-correlator to be suitable for heartbeat detection. More on this topic in
the next chapter.

6.5.3 Resolution efficiency

Empirical and theoretical computations indicate that the resolution is not depreciated
by the bitstream cross-correlation. Noise in the cross-correlation result is mainly mod-
ulation noise. Since the cross-correlation result is the sum of equal bits from the XNOR
stage, the output is restricted to 10 bits before decimation which is considerably less
than the 16 bits result computed by the µc . The output resolution is higher than the
resolution of the incoming bitstream.

6.6 Suggested improvements

The simplest improvement of the bitstream cross-correlator, which will involve great
improvements in terms of power savings and silicon area, is customizing of basic build-
ing blocks of the circuit. All building blocks in the implemented design are created from
NAND and inverters, without adapting of transistor dimensions. The main power
consumers in the circuit are probably the three 1024 bit registers with the belonging
clock buffers. Other solutions for the registers are tempting, maybe one of the asyn-
chronous shift registers summarized in [Dobk 06] are employable, approaching a fully
asynchronous system. The last main synchronous element in the circuit would then be
the time allowed for the bubble sort. The whole operation depends on the time it takes
for the bubble sort to conclude, which is somewhere between instantaneous and the
worst case bubble time. A single zero-one transition in the thermometer code can only
occur when the bubble register is stable, the circuit is then ready to read to start the next
computation.
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The Muller pipeline discussed in section 2.1.3 resembles the bubble register in behavior
and appearance. A short glance at how the Muller C-element can be used in bubble
sort is given.

6.6.1 Bubble sort register using Muller C-elements

The symmetric implementation of the Muller C-element in [Sham 98] was created and
the transistor widths were dimensioned as a trade-off between propagation delay and
power consumption. The layout area occupied by the element is equal to the latches in
the actual implementation. Smaller dimensions could have resulted in a slower, but less
power dissipating solution. One bit in the bubble register is realized from one Muller
C-element, one AND gate and one inverter. A Monte Carlo simulation confirms the
operation and the mean bubble time is estimated to 116 ps, almost 20% shorter than the
simulated mean time of the original design.

The Muller C-element relaxes the previously discussed τ3 and is a well known element
in asynchronous logic. The example also touches how speed, power efficiency and
layout area should be customized for the planned implementation.
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7 Electrocardiography beat detection using
cross-correlation

Cross-correlation is a generic pattern-matching computational element suited for sev-
eral signal processing tasks. The bitstream running cross-correlation solution presented
in this thesis aims at low power operation at low or moderate signal frequencies. The
convolution possibilities of the chip increases its usability to include filter operations.
The convolution filter is programmable and can e.g. be adapted to the specific input
data.

Many of these applications are emerging with biomedical applications and one area of
application is in the field of beat detection in ECG analysis.

7.1 Beat detection in Electrocardiography

Cross-correlation can be used for heartbeat detection in an ECG analysis. An intro-
duction to beat detection and ECG is given before the implemented cross-correlator is
tested using one of the most promising beat detection approaches.

7.1.1 Electrocardiography

Electricity is what makes the heart beat. ECG is the recording of the electrical activity of
the heart and it is possible to diagnose many cardiac disorders through perturbations in
these recordings. The standard ECG consists of 12 leads, recorded by electrodes placed
on both arms and legs, and across the chest. Each lead views the heart at an unique
angle, facilitating sensitivity to a particular region of the heart. Arrhythmia refers to any
disturbance in the rate, regularity, site of origin, or conduction of the cardiac electrical
impulse. Single abnormal beats frequently occur in the majority of healthy individuals,
but many arrhythmias can be dangerous and some require immediate therapy. ECG
is today the most important tool for diagnosis of arrhythmia and a long term ECG is
often needed to identify such irregularities. The Holter monitor provides long tracing
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of one or more leads, where the leads that provide the most information are chosen.
The recordings are stored and later analyzed.
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Figure 7.1: Schematic representation of a normal ECG including P wave, QRS complex
and T wave beat markers.

The electrical activity from one cycle of cardiac contraction and relaxation is schemati-
cally drawn in Fig. 7.1. Not all electrical events of the heart are evident on an ECG. The
P wave is caused by contraction, or depolarization, in the heart’s prechambers, atrial
contraction. The next electrical activity is called the QRS complex and the precise con-
figuration of these events can vary greatly. The first upward deflection is more precisely
called an R wave and is caused by the contraction of the left and right ventricles, the
two main heart chambers. The T wave is caused by relaxation, or repolarization, of the
ventricles.

The intervals and segments between events are given names and different irregularities
can be identified by the length of these intervals. Examples are the QT interval, from
QRS onset including the T wave, and ST segment, from QRS offset to the start of the T
wave.
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7.1 Beat detection in Electrocardiography

The QT database

A number of automated methods for measuring intervals and segments in the cardiac
cycle have been designed. The lack of standardized databases containing a sufficient
large number of manually annotated heartbeats, have prevented good evaluation of the
performance of such algorithms. Tremendous effort from clinicians is required to man-
ually annotate a statistically significant set of ECG records. The QT Database [Lagu 97]
includes ECGs to challenge beat detection algorithms with real-world variability. Car-
diologists have manually annotated sections from each record in the database. The
collection of data contains a total of 105 fifteen-minute excerpts of two leads ECGs,
more than 50 hours of recordings.

Software to extract the heartbeat records and the annotation files is available online, but
a Python wrapper script was created for easier access. An excerpt of this script can be
found in Appendix E. The Fig. 7.2 shows one cardiac cycle with manually annotated
markers.

Figure 7.2: One heartbeat with with manually annotated markers.

7.1.2 Beat detection

Beat detection involves identifying all cardiac cycles in ECG recordings and locating
each identifiable waveform component within a cycle, the P wave peak, the QRS peak
and the T wave peak, including the belonging on- and offset values. The accuracy of
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7 Electrocardiography beat detection using cross-correlation

the beat detection has significant impact on the overall classification performance and
various computerized methods have been developed to meet the minimum error val-
ues that should be expected with any automatic algorithm. One method that does not
meet the requirements involves the cross-correlation between a template representing
one generic heartbeat and the heartbeats of a patient.

Multi-component based beat detection

An improvement of the traditional cross-correlation method is proposed in [Last 04],
where each of the identifiable waveform components within a cycle are searched for
in isolation. Three templates were used, one for the P wave, one for the QRS complex
and one for the T wave. The first step is to locate the QRS complex by cross-correlating
the QRS template with the ECG signal. This method is repeated with the P ant T wave
templates. In each case, the highest value of the cross-correlation result within the
given correlation interval is compared to a predefined threshold. The threshold value
is established during a pre-learning phase and can be adjusted during operation. The
on- and offset values are generated automatically based on the used templates.

(a) P wave template. (b) QRS wave template. (c) T wave template.

Figure 7.3: The three templates.

There are at least two drawbacks to the following bitstream multi-component based
beat detection analysis. 1) The OSR = 8 which restrains the template length to 64
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7.1 Beat detection in Electrocardiography

Figure 7.4: Cross-correlation results of the QRS complex.

samples. 2) The fact that finding and generating the most advantageous template is a
difficult and time consuming task. In addition, the template and ECG signal have to
be scaled before modulation, giving even more alternatives to create the best combina-
tion. Each template was created by summing and averaging the ten first identifiable
components of each type. Fig. 7.3 shows the three templates and the data which they
were generated from. The vertical lines show the boundaries of the template, 64 sam-
ples wide. The templates are scaled so that the mean of each template is zero. The ECG
signal is scaled to from -1 to 1 to span the modulator dynamic range. This also gives the
most similar result compared to cross-correlation of the PCM coded signals in software.

The first objective is to localize the QRS complex. The decimated chip result is plotted
in Fig. 7.4 together with the ideal cross-correlation. Again, “ideal” is the mathematical
correct cross-correlation between the two original high resolution PCM coded signals.
The label “QRS” and the belonging line shows the markers inserted by clinical experts.
Solely by inspection the bitstream cross-correlation results are promising and very close
to the “ideal” result.
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7 Electrocardiography beat detection using cross-correlation

Figure 7.5: Cross-correlation results of the P wave.

The next component to detect is the P wave, which historically is the most difficult
wave to detect. Fig. 7.5 shows that the P wave is not exclusively found. Both the T
wave and QRS complex gives large peaks, which makes the localization of this wave a
challenge. Problems detecting the P wave are also reported in [Last 04], but not to this
extent. More important is that the P wave gives a higher peak in the bitstream cross-
correlation result, which may be the result of scaling before modulating the signal. A
equal scaling in the “ideal” case, seems to give poorer results. A better template would
probably have given a better result.

The last wave to localize is the T wave. Fig. 7.6 shows again that the bitstream cross-
correlation gives a better result than the “ideal” case and the T wave can easily be
detected by thresholding.
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7.1 Beat detection in Electrocardiography

Figure 7.6: Cross-correlation results of the T wave.

7.1.3 Conclusion

This first attempt of bitstream multi-component based beat detection seems promising,
but is far from the work performed in [Last 04] where results were statistically com-
pared to other methods. A proper evaluation of the bitstream cross-correlation method
for detection of components in an ECG signal demands extensive analysis, unfortu-
nately beyond the scope of this thesis. The accomplished results seem promising. Some
of the bitstream cross-correlation results were better than expected, which probably is
caused by different scaling of the bitstream and PCM signal around zero.
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8 Conclusion

A single-chip cross-correlator has been presented in this master thesis. The work in-
cludes processing signals in their oversampled ∆Σ domain and asynchronous tech-
niques which together result in a novel signal processing solution. Bitstream opera-
tions were presented in [Malo 91] and asynchronous principles were derived as early
as in [Mull 59]. The ideas are old, but not practiced to a great extent. Combining these
two nontraditional techniques lead to a unique proposal to the computation demand-
ing cross-correlation operation.

Bitstream processing profits from simple multiplication operations, complex digital
hardware like a multiplier can be substituted by a single gate. A novel asynchronous
bubble register, which is found to be surprisingly similar to the asynchronous Muller
pipeline, avoids increased clock frequency when summing the multiplication result,
and makes the power dissipation proportional to the actual amount of processing done.

The implemented bitstream cross-correlator has proven its usability on low frequency
signals and has been demonstrated on signals such as simple sinusoids to more com-
plex real-world examples. The chip has been tested to perform heartbeat detection, a
simple comparison between the bitstream and PCM cross-correlation seems promising.
The possible utilization as a convolver is exciting. The cross-correlator is measured to
mean power consumption of 5.1 mW when performing 120 k cross-correlations each
second at Nyquist rate. This is 84 times better than the low power µc ATmega48PA.
The chip was a proof-of-concept with a far from optimal layout. The µc is a generic
tool and more power efficient cross-correlator architectures exist. A speed and energy
performance between peers remain.

The bitstream cross-correlation earnings depend on an already available bitstream coded
input signal, modulated at a low Oversampling Ratio. The achieved resolution is
mainly dependent on the ∆Σ modulator.

The SKILL implementation of the bitstream cross-correlator/convolver has made the
system easily adaptable to a large variety of possible utilizations. Different measure-
ment schemes were set up, and the most advantageous alternative was developed fur-
ther to perform simple initial tests and heartbeat detection. A design flaw seemed to
sabotage the implementation, but a solution was found. The design bug did not com-
promise testing nor proof-of-concept.
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8 Conclusion

The ideas and concepts behind the implemented chip can hopefully be used in low
power, low frequency applications and one possible utilization can be heartbeat detec-
tion. Further development of the concept can result in a fully asynchronous system.
Extrapolation of the concepts behind bitstream processing and asynchronous opera-
tions can potentially make a foundation for a clockless, power efficient and error robust
processing unit.
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Abstract—The fundamental operation of cross-correlating sig-
nals is viable in a number of signal processing applications. In
typical pattern-matching applications, cross-correlation is desir-
able. In this paper we present a power efficient implementation
of a time-domain cross-correlator suitable for integration in
CMOS. Bitstream coding of both data and template simplify
multiplication operations. Measured performance of a CMOS
implementation in 90 nm technology is reported.

I. INTRODUCTION

A major trend in microelectronics is integration of spe-
cialized solutions in an increasing number of applications.
The idea of ubiquitous computing is certainly exciting, but at
the same time demanding. Both sensing and controlling real
world processes demand mixed-mode solutions combined with
challenging signal conditioning and processing. The notion
of small, portable, battery-operated systems often organized
in a wireless sensor network (WSN) has initiated significant
research activity. In these applications size is limited and
low-power operation is mandatory for battery operation. The
benefit of adopting specialized silicon systems is evident in
applications like WSN motes [1].

An overall characteristic of these ubiquitous computational
devices is mixed-mode operation. Sensing of external states
is accomplished with analog-to-digital converters (ADCs) and
controlling of external processes requires DACs. A popular
and power-efficient converter architecture is sigma-delta, or
delta-sigma, converters well suited for integration in digital
technology.

A recurring signal processing task in real-world signal
analysis is pattern-matching recovering special features of
some sensed signal. As an example in this work we will use
signal processing for Electrocardiogram (ECG) classification.
Although filter-based solutions have been developed with great
sophistication over the last decades [2], recent publications [3]
indicate that cross-correlation based methods are preferable.
Furthermore, the miniaturization of ECG-monitoring devices
are pursued both in research and in industry [4]. The notion
of heartbeat detectors embedded in the ECG electrode and
configured in a wireless sensor network is tempting and would
enable long-term ECG analysis. Substitution of the quite
clumsy Holter monitors used today would make life easier.

In this work we will show how power-efficient cross cor-
relators are implementable in standard CMOS technology,
exploring bitstream-coded signals. The internal signal repre-
sentation called bitstream is found in sigma-delta converters,
but is usually decimated to Nyquist rate binary coded numbers.
However, some signal processing like filtering using bitstreams

are reported [5], [6], [7], [8]. Another application of bitstreams
is found in the audio coding format named Direct-Stream-
Digital used in SACD, developed by Sony and Philips [9].

The idea of cross-correlation using bitstreams was proposed
in [10] and evaluated for heart rate variability study in [11]. In
this paper we present an implementation of a complete cross-
correlation chip with a binary coded interface.

II. BITSTREAM CROSS-CORRELATOR

A discrete estimate of the cross-correlation of two sequences
is found by the equation:

r(t) =
n−1∑
k=0

y(k)x(t+ k)

The finite, time-variant sequence x(t) of length n is cross-
correlated with a template sequence, y(t), by multiplying each
element of the two sequences over a window of length n and
summing the result. The result, r(t), is a good estimate of
the cross-correlation between the two finite sequences. For
every new sample of the incoming signal another r(t) may
be computed creating another element of a cross-correlation
sequence between the incoming signal and the template.

From a computational perspective we need to do n multipli-
cations and sum the results for each sample of the incoming
signal. We either need n multipliers running in parallel or
to speed up the clock with a factor of n. Then we need to
figure out an efficient summing operation in the simplest form
requiring another n iterations following the multiplications.
No wonder alternative pattern-matching measures are sought
when power is precious.

In this paper we explore the idea proposed in [10] of
implementing cross-correlation by processing bitstreams. By
doing so, quite power efficient single chip heartbeat detectors
embedded in the ECG electrode are feasible.

III. SINGLE-CHIP CROSS-CORRELATOR

To allow for a simple interface to the chip, both input and
output signals are assumed to be Nyquist rate binary encoded.
Conversion to and from oversampled bitstream representation
is done on-chip. Fig. 1 shows how the bitstream is only
necessary internal to the system. However, a Serial Periph-
eral Interface Bus (SPI) is used for interfacing, and on-chip
multiplexers facilitate testing of individual blocks.
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A. Bitstream Conversion

The binary-to-bitstream signal conversion is done using a
two step interpolation filter and a sigma-delta modulator. The
interpolation filter upsamples an input signal at the Nyquist
rate by the oversampling ratio required by the modulator. In-
terpolation in several steps is commonly used. This allows for
a combination of an anti-alias filter, with a narrow transition
band, and a more hardware efficient Cascaded Integrator Comb
(CIC) filter [12]. This is a compromise between filter quality
and silicon area, which in turn affects power consumption.

Similarly, a decimation function is required for removing the
high-frequency quantization noise present in bitstream coded
signals, shown as the CIC decimator in Fig. 1.

Using a low oversampling ratio (OSR) when modulating the
bitstream obtains the largest power savings [10]. As a conse-
quence, the possible signal quality of the bitstream is limited.
Compromising between these two considerations, the system
OSR is set to 8. Still the bit sequence may be of significant
length depending on the time-span of the correlation window.
In our test-chip we use a correlation length of 1024 bits.

B. Bitstream Operations

Multiplication between bitstreams has a significant advan-
tage compared to its multibit counterpart and can be carried out
using basic logic gates. The dynamic range of the implemented
modulator is normalized to −1 ≤ x ≤ 1, where x is the
input. The probability that the output of the modulator, X ,
is 1 or 0 is then given by P (X = 1) = (1 + x)/2 or
P (X = 0) = 1 − P (X = 1) = (1 − x)/2. The modulation
of two input signals x and y is regarded as uncorrelated and
results in two bitstreams, X and Y . The XNOR of the two
bitstreams results in:

P (X⊕Y = 1) =P (X = 0) ·P (Y = 0)
+ P (X = 1) ·P (Y = 1)

=
1
2
(1 + xy)

which indicates that operations usually requiring complex
digital circuitry can be done with a simple logic gate when
processing bitstreams. The results from bitstream multiplica-
tions are just a single bit from each multiplier. A summing
operation still remains.

For power efficiency we try to avoid clocks exceeding the
oversampled clock frequency. Knowing the multiplier results
are all single bits, the summing is reduced to counting the
number of ’1’ after multiplications. A novel asynchronous
solution is explored to compute the sum during the same clock
cycle as the multiplication. The counting operation is split in
two operations:

1) Sorting bit sequence from multipliers. The sorting
method used is inspired by the software bubble sort al-
gorithm, but is implemented completely asynchronously.

2) Encoding sorted result as binary number. By interpreting
the sorted bit sequence as a thermometer coded result,
a binary number is encoded.

External

bitstream

Cross-

Correlator

FIR

CIC

Decimator

CIC

Interpolator

DSM

SPI in

SPI in

SPI out

DSM

out
10 bits

10 bits

1 bit

1 bit

Fig. 1. Block schematic showing main signal paths. The multiplexers allow
each block to be tested individually. Only the SPI in and out pins are used
for the full signal path.

The asynchronous operation is achieved using inherent gate
delays explained below.

C. Bitstream Cross-correlation

During setup phase, the binary-to-bitstream converter may
be used or the template may be shifted in directly as a
bitstream coded sequence of up to 1024 bits. Then the in-
coming signal is shifted into the correlation register coded as
a bitstream or converted by the binary-to-bitstream converter.
All bits in the two registers are “multiplied” by XNOR gates
at the start of every clock cycle. The bubble register is loaded
with the results from the XNOR operation after an adequate
delay. Then the “bubbling” is started and the rest of the
clock cycle is reserved for the asynchronous sorting operation
followed by latching of results. During the next clock cycle
the thermometer coded result of the bubbling is converted to
a binary representation in parallel with computation of the
following correlation result.

IV. IMPLEMENTATION

In these dedicated systems, register lengths are hard-coded
by design. Depending on application, correlation window
lengths must be adapted for minimal power consumption. For
easy generation of different cross-correlators we have used
SKILL, a LISP-like CAD system extension language. The
produced SKILL scripts facilitate fast and easy generation of
both schematics and layout of cross-correlators of different
sizes.

A. Bitstream Cross-correlator

The bubble register used for sorting is shown in Fig. 2 and
each element consists of one ordinary RS-latch, one AND
gate and inverters used as delay-elements. The latches are
loaded with the result from the bitstream multiplication in the
beginning of the clock cycle. The bubble sorting is initiated
after a predefined delay for proper settling of the latches.

It is important to notice that the exchange of bits in the
bubble register is local, enabling parallel operation. Basically,
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Bubble register

Fig. 2. Asynchronous bubble sorter.

the operation (1, 0) → (0, 1) can be carried out, provided
data is stable. To ensure failsafe operation the actual exchange
operation is delayed using some inverters. In this way all ’1’
are “bubbled” to the right while the ’0’ is “bubbled” to the
left.

The final and stable condition of the bubble register has all
’1’s stacked to the right and all ’0’s to the left. This code is
known as a thermometer code. In fact there is one and only
one (0, 1) sequence in the sorted result, which may be used
for unique binary encoding.

The thermometer code is converted to its binary represen-
tation in the following clock cycle, while the next cross-
correlation result is computed. The thermometer encoded
result is fed to the binary encoder assuming a single (0, 1)
transition. This transition is identified by a row decoder, com-
paring two consecutive values from the thermometer coded
array using an XOR-gate. The selected row pulls down the
correct precharged output lines which encodes the desired
binary result. The output lines are sampled after a predefined
delay and clocked out through the SPI-interface.

B. Data Conditioning

Hiding of bitstream coding is an integral part of the cross-
correlator chip. The following modules are included:

1) Interpolation filter: The anti-aliasing step of the inter-
polation filter is a 20-tap halfband FIR filter following an
upsampling by two. This filter type has every other coefficient
set to zero and is an efficient way to achieve a narrow transition
band around 0.5π. Each tap in the filter is in turn simplified.
Gain steps are quantized such that each are realizable as a sum
of maximum two hardwired bit-shift operations. This removes
the requirements for full multiplications in the filter.

The CIC filter step is of third order and performs an
upsampling by four, resulting in the desired oversampling rate.

2) Sigma-Delta modulator: The modulator has a second
order error feedback structure. This structure uses multibit-bit
feedback and is well suited for digital input. The most impor-
tant design constraint for the modulator is the requirement that
the output is a bitstream. This rules out good modulator types
such as cascaded or MASH architectures giving word streams.
Quality of the modulator is also limited by the low OSR in
the system. For an OSR of 8, modulator orders of two and
more give a maximum expected signal to quantization noise
ratio (SQNR) of 35–40 dB.

Fig. 3. Chip layout designed in STMicroelectronics 90 nm technology, delta-
sigma converter and 1024-bits cross-correlator. Chip size included pads is
1× 1mm

3) Decimation filter: The filter used for decimation is an
ordinary CIC decimation filter of third order with a downsam-
pling ratio of 8. This converts the oversampled output from
the cross-correlation block back to a Nyquist rate signal, while
reducing high frequency noise inherited from the bitstream
representation.

V. MEASUREMENT RESULTS

The chip is measured using a simple microcontroller en-
abling measurements of the different chip modules.

1) Interpolation filter: The frequency response of the cas-
caded interpolation filter is shown in Fig. 4. The response of
the FIR filter step was confirmed by chip measurements, using
both white noise input signals and sinusoidal inputs. Total stop
band attenuation is 35–40 dB, close to expected performance.

2) Sigma-Delta modulator.: The chip modulator was tested
using a full-scale sinusoidal input. Output spectrum is shown
in Fig. 5 and shows the expected SQNR level.

A. System Performance

Here we briefly show the system performance by
component-based ECG-analysis [3].

In Fig. 6 the cross-correlation from the test-chip is shown
together with cross-correlation using the xcorr()-function in
MATLAB. The data used is taken from the QT database [13].
The first QRS-wave from the annotated database is selected as
template and loaded into the template-register as a bitstream.
Then a sequence of three heartbeats are fed to the chip and
the cross-correlated result is decimated and plotted. Just by
inspection the cross-correlation results are promising and very
close to results obtained using “ideal” cross-correlation with
MATLAB. A proper evaluation of the cross-correlation chip
for QRS-detection demands extensive analysis, far beyond the
scope of this paper.

The main computational block doing cross-correlation is
measured to 2.1 mW power consumption when active. With a
clock frequency of 480 kHz and an OSR of 8 this is equivalent
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Fig. 4. Frequency response of cascaded interpolation filter. Normalized to
half the oversampling frequency.
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Fig. 5. Power spectral density of the sigma-delta modulator. Nyquist
frequency indicated by dotted line.

to ≈ 7.7 M multiplications each second at Nyquist rate. In
addition this first chip was a proof-of-concept with far from
optimal layout. We consider these results to be very promising
for low-power, single-chip pattern-recognition.

As indicated in the introduction, cross-correlation is a
generic pattern-matching computational element suited for
several signal processing tasks. The bitstream processing so-
lution presented in this paper aims at low-power operation
at low or moderate signal frequencies. There is a growing
demand for low frequency sensor interfacing where filtering
is required. The proposed cross-correlator chip may also be
used as a programmable filter by time-warping the template
for convolution. The cross-correlator chip is suitable both for
low-frequency operation and as a programmable filter. Many of
these applications are emerging with biomedical applications.

VI. CONCLUSION

In this paper we have presented a novel single-chip cross-
correlator suitable for power-efficient pattern matching. Bit-
stream encoded signals found in sigma-delta converters are
used for efficient multiply-and-sum operations basically sub-
stituting multipliers by simple gates.A novel asynchronous
bubble-register is utilized avoiding increased clock frequency.
The running cross-correlator is implemented in 90 nm technol-
ogy and measured results are provided.We expect these kind

Fig. 6. Bitstream cross-correlation results.

of cross-correlators to be viable in power-limited, low signal
frequency applications like QRS-detection of ECG-signals.
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B SKILL code example

The following SKILL script, xbitmux41.il, produces a multi bits 4 to 1 mux. A section
of the produced layout running the script with parameter l = 10 is shown in Fig. B.1.

1 procedure ( mux41 ( l )
2 prog ( ( dbcv dbmux tmp lib name cel l name height width d Z x y i j
3 pwidth mlayer p s t a r t y d i s t ddis t )
4

5 tmp lib name=” c o r r e l a t i o n ”
6 cel l name= s t r c a t ( ”mux” s p r i n t f ( n i l ”%d” l ) ” b i t 4 1 ” )
7 dbcv=dbOpenCellViewByType ( tmp lib name cel l name ” layout ” ”maskLayout” ”

w” )
8 dbmux=dbOpenCellViewByType ( ” master ” ”muxXbit41” ” layout ” )
9

10 dec l are ( d [ 4 ] )
11 d [ 3 ] = 0 . 1 5 0
12 d [ 2 ] = 0 . 9 8 0
13 d [ 0 ] = 3 . 2 0 5
14 d [ 1 ] = 3 . 7 8 0
15 Zy=4.61
16 width =3.92
17 height =4.76
18 pwidth =0.14
19 pdis t =0.2
20 pdis t=pdis t+pwidth
21 p s t a r t =1
22 x=0
23 ddis t= f l o o r ( l ∗height /4)
24

25 dec l are ( mlayer [ 4 ] )
26 mlayer [0 ] = ”M2”
27 mlayer [1 ] = ”M3”
28 mlayer [2 ] = ”M4”
29 mlayer [3 ] = ”M5”
30

31 for ( i 0 ( l −1)
32 y=height ∗ i
33 x=0
34 dbCreateInst ( dbcv dbmux n i l 0 : y ”R0” )
35

36 for ( j 0 3
37
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38 i f ( j != 0
39 l e t ( ( c o n t a c t l a y e r s )
40 l a y e r s = s t r c a t ( mlayer [ j ] ” M2” )
41 c o n t a c t = dbOpenCellViewByType ( ”cmos090” l a y e r s ” symbolic ” )
42 dbCreateInst ( dbcv c o n t a c t n i l 0 : y+d [ j ] ”R90” )
43 )
44 )
45 i f ( ( y+d [ j ] ) < ddis t ∗ j +pdis t ∗ i then
46 x=9
47 dbCreatePath ( dbcv l i s t ( mlayer [ j ] ”drawing” ) l i s t ( 0 : y+d [ j ]
48 −p s t a r t−pdis t ∗ ( x−i ) : y+d [ j ]
49 −p s t a r t−pdis t ∗ ( x−i ) : dd is t ∗ j +pdis t ∗ i
50 −p s t a r t−pdis t ∗ l : dd is t ∗ j +pdis t ∗ i
51 ) pwidth )
52 e lse
53 dbCreatePath ( dbcv l i s t ( mlayer [ j ] ”drawing” ) l i s t ( 0 : y+d [ j ]
54 −p s t a r t−pdis t ∗ i : y+d [ j ]
55 −p s t a r t−pdis t ∗ i : dd is t ∗ j +pdis t ∗ i
56 −p s t a r t−pdis t ∗ l : dd is t ∗ j +pdis t ∗ i
57 ) pwidth )
58 )
59

60 l e t ( ( net name net pin term t e x t )
61 ; input
62 s p r i n t f ( net name ”D%d<%d>” j i )
63 net = dbCreateNet ( dbcv net name )
64 term = dbCreateTerm ( net n i l ” input ” )
65 pin=dbCreatePin ( net dbCreateRect ( dbcv l i s t ( mlayer [ j ] ” pin ” )
66 l i s t (−p s t a r t−pdis t ∗ l : dd is t ∗ j +pdis t ∗ i−pwidth/2
67 −p s t a r t−pdis t ∗ l +pwidth : ddis t ∗ j +pdis t ∗ i +pwidth/2 )
68 )
69 )
70 t e x t = dbCreateTextDisplay ( term term l i s t ( mlayer [ j ] ” pin ” ) t
71 −p s t a r t−pdis t ∗ l +pwidth /2: ddis t ∗ j +pdis t ∗ i
72 ” centerRight ” ”R0” ”swedish” 0 . 1 6 t n i l t n i l t ”name” )
73 t e x t ˜>parent = pin˜> f i g
74 ) ; l e t
75

76

77 ) ; for j
78 l e t ( ( net name net pin term t e x t )
79 ; input
80 s p r i n t f ( net name ”out<%d>” i )
81 net = dbCreateNet ( dbcv net name )
82 term = dbCreateTerm ( net n i l ” output ” )
83 pin=dbCreatePin ( net dbCreateRect ( dbcv l i s t ( ”M2” ” pin ” )
84 l i s t ( width−0.14 : y+Zy−0.07 width : y+Zy+ 0 . 0 7 )
85 )
86 )
87 t e x t = dbCreateTextDisplay ( term term l i s t ( ”M2” ” pin ” ) t
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88 width−0.07 : y+Zy
89 ” c e n t e r L e f t ” ”R0” ”swedish” 0 . 1 6 t n i l t n i l t ”name” )
90 t e x t ˜>parent = pin˜> f i g
91 ) ; l e t
92 ) ; for i
93

94 l e t ( ( net name net pin term t e x t AB l a y e r )
95 dec l are (AB[ 4 ] )
96 AB[ 0 ] = 2 . 7 2
97 AB[ 1 ] = 2 . 3 9 5
98 AB[2]=0+0 .07
99 AB[3 ]= width−0.07

100 dec l are ( net name [ 4 ] )
101 net name [ 0 ]= ”A”
102 net name [ 1 ]= ”B”
103 net name [ 2 ]= ”vdd”
104 net name [ 3 ]= ”gnd”
105 dec l are ( l a y e r [ 4 ] )
106 l a y e r [0 ] = ”M2”
107 l a y e r [1 ] = ”M3”
108 l a y e r [2 ] = ”M1”
109 l a y e r [3 ] = ”M1”
110 for ( i 0 3
111 net = dbCreateNet ( dbcv net name [ i ] )
112 term = dbCreateTerm ( net n i l ” input ” )
113 pin=dbCreatePin ( net dbCreateRect ( dbcv l i s t ( l a y e r [ i ] ” pin ” )
114 l i s t (AB[ i ]−0 .07 :0 AB[ i ] + 0 . 0 7 : 0 + 0 . 1 4 )
115 )
116 )
117 t e x t = dbCreateTextDisplay ( term term l i s t ( l a y e r [ i ] ” pin ” ) t
118 AB[ i ] : 0 + 0 . 0 7
119 ” centerTop ” ”R0” ”swedish” 0 . 1 6 t n i l t n i l t ”name” )
120 t e x t ˜>parent = pin˜> f i g
121 )
122 )
123

124 dbSave ( dbcv )
125 ; dbClose ( dbcv )
126 ; dbPurge (dbmux)
127

128 ) ; prog
129 ) ; procedure
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B SKILL code example

Figure B.1: Section of the layout produced by the script xbitmux41.il.
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C Microcontroller firmware

The following code excerpt is the most important methods in the µc firmware, written
in ANSI C.

1 # include ” xcorr . h”
2 # include ”sam7 . h”
3 # include ”Board . h”
4 # include ” p e r i p h e r a l s . h”
5 # include ”usb . h”
6

7 # define UINT MAX 4294967295
8

9 unsigned i n t incoming [ 1 6 ] ;
10 i n t r e g l e n g t h =512;
11 i n t templen =0;
12 i n t dreglen =0;
13

14 / / C l e a r s i g n a l r e s e t i n g i n t e r n a l c l o c k d i v i d e r s
15 void x c o r r c l e a r ( )
16 {
17 i n t i = 0 ;
18

19 AT91F PIO ClearOutput ( pPIO , PIO CLEAR ) ;
20 for ( i =0 ; i <10000; i ++)
21 ;
22

23 AT91F PIO SetOutput ( pPIO , PIO CLEAR ) ;
24 }
25

26 / / S e t s one o f t h e r e g i s t e r s t o 1 ’ s o r 0 ’ s
27 void x c o r r s e t r e g ( i n t reg , i n t value )
28 {
29 i n t i ;
30

31 i f ( reg )
32 AT91F PIO SetOutput ( pPIO , PIO TEMPLATE ENABLE) ;
33 e lse
34 for ( i =0 ; i <32; i ++)
35 i f ( i <16)
36 incoming [ i ]= value∗UINT MAX;
37 e lse
38 incoming [ i ] = 0 ;
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39

40 AT91F PIO SetOutput ( pPIO , PIO EXTERNAL DS ENABLE) ;
41 x c o r r c l e a r ( ) ;
42

43 for ( i =0 ; i <1024; i ++)
44 {
45 spi send ( 1 , value ∗1023) ;
46 i f ( i ==r e g l e n g t h )
47 value=reg ;
48 }
49

50 i f ( reg )
51 AT91F PIO ClearOutput ( pPIO , PIO TEMPLATE ENABLE) ;
52

53 u s b p r i n t ( ”\nreg ” ) ;
54 u s b p r i n t i n t ( reg ) ;
55 u s b p r i n t ( ”=” ) ;
56 u s b p r i n t i n t ( value ) ;
57 u s b p r i n t l n ( ” s e t reg confirmed ” ) ;
58 }
59

60 / / S e t s b i t o f f s e t
61 void x c o r r s p i o f f s e t ( i n t o f f s e t )
62 {
63 i n t i ;
64 s p i c f g c s ( 1 , 0 , 0 , 1 , 1 , 1 ) ;
65 for ( i =0 ; i<o f f s e t ; i ++)
66 spi send ( 1 , 1 ) ;
67 s p i c f g c s ( 1 , 0 , 0 , 1 , 10 , 10) ;
68 u s b p r i n t ( ” o f f s e t =” ) ;
69 u s b p r i n t i n t ( o f f s e t ) ;
70 u s b p r i n t l n ( ”” ) ;
71

72 }
73 / / S e t s t h e n e c e s s a r y c h i p i n p u t p i n s t o b e f o r e running CC
74 void xcorr run se tup ( )
75 {
76 AT91F PIO ClearOutput ( pPIO , PIO TEMPLATE ENABLE) ;
77 AT91F PIO SetOutput ( pPIO , PIO EXTERNAL DS ENABLE) ;
78 AT91F PIO SetOutput ( pPIO , PIO CONFIG OUT A) ;
79 AT91F PIO SetOutput ( pPIO , PIO CONFIG OUT B ) ;
80 x c o r r c l e a r ( ) ;
81 u s b p r i n t l n ( ” Waiting f o r incoming data ” ) ;
82 }
83

84 / / S e t s t h e n e c e s s a r y c h i p i n p u t p i n s and c l o c k s in r e g i s t e r v a l u e s
85 void xcorr temp setup ( i n t value )
86 {
87 i f ( value <0)
88 {
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89 templen =0;
90 AT91F PIO SetOutput ( pPIO , PIO TEMPLATE ENABLE) ;
91 AT91F PIO SetOutput ( pPIO , PIO EXTERNAL DS ENABLE) ;
92 x c o r r c l e a r ( ) ;
93 u s b p r i n t l n ( ” Waiting f o r template data ” ) ;
94 return ;
95 }
96 i f ( templen++<r e g l e n g t h )
97 spi send ( 1 , value ∗1023) ;
98

99 i f ( templen==r e g l e n g t h )
100 {
101 for ( templen =0; templen <(1024− r e g l e n g t h ) ; templen ++)
102 spi send ( 1 , 1023) ;
103 templen=r e g l e n g t h +1;
104 }
105 }
106

107 / / S e t s t h e n e c e s s a r y c h i p i n p u t p i n s and c l o c k s in r e g i s t e r v a l u e s
108 void xcorr dreg se tup ( i n t value )
109 {
110 i n t i ;
111

112 i f ( value <0)
113 {
114 dreglen =0;
115 AT91F PIO ClearOutput ( pPIO , PIO TEMPLATE ENABLE) ;
116 AT91F PIO SetOutput ( pPIO , PIO EXTERNAL DS ENABLE) ;
117 x c o r r c l e a r ( ) ;
118 u s b p r i n t l n ( ” Waiting f o r dreg data ” ) ;
119 return ;
120 }
121 i f ( dreglen<r e g l e n g t h )
122 {
123 i =dreglen /32;
124 spi send ( 1 , value ∗1023) ;
125

126 incoming [ i ] |= ( value<<(dreglen %32) ) ;
127

128 }
129 dreglen ++;
130

131 i f ( dreglen==r e g l e n g t h )
132 {
133 for ( dreglen =0; dreglen <(1024− r e g l e n g t h ) ; dreglen ++)
134 spi send ( 1 , 0 ) ;
135

136 dreglen=r e g l e n g t h +1;
137 }
138 }
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139

140 / / The b u g f i x e d v e r s i o n i s ran i f r e g l e n g t h =512
141 i n t x c o r r s p i s e n d r e c v b u g f i x ( i n t value )
142 {
143 i n t i , j ;
144 i n t temp ;
145

146 i f ( r e g l e n g t h ==1024)
147 return s p i s e n d r e c v ( 1 , value ∗1023) ;
148

149 for ( i =0 ; i <16; i ++)
150 {
151 i f ( i <15)
152 incoming [ i ] = ( incoming [ i ] >> 1) | ( ( incoming [ i +1]&1)<<31) ;
153 i f ( i ==15)
154 incoming [ i ]= ( incoming [ i ] >> 1) | ( value <<31) ;
155 for ( j =0 ; j <32; j ++)
156 {
157 temp=( incoming [ i ]>> j ) &1;
158 s p i s e n d r e c v ( 1 , 1023∗ temp ) ;
159 }
160 }
161 for ( i =0 ; i <511; i ++)
162 s p i s e n d r e c v ( 1 , 0 ) ;
163

164 return s p i s e n d r e c v ( 1 , 0 ) ;
165 }
166 / / S e t t h e l e n g t h o f t h e b u b b l e r e g i s t e r
167 void x c o r r s e t r e g l e n g t h ( i n t len )
168 {
169 r e g l e n g t h=len ;
170 }
171

172 / / Method used w h i l e measur ing c u r r e n t
173 i n t xcorr currmeas ( i n t f )
174 {
175 i n t i ;
176 i n t j ;
177

178 s p i c f g c s ( 1 , 0 , 0 , 1 , 10 , 10) ;
179

180

181 for ( j =0 ; j <1000; j ++){
182 for ( i =0 ; i <1024; i ++)
183 s p i s e n d r e c v ( 1 , 1023) ;
184

185 for ( i =0 ; i <1024; i ++)
186 s p i s e n d r e c v ( 1 , 0 ) ;
187 return 1 ;
188 }
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The following code excerpt is the most important methods for reading and writing data
to the µc from a computer.

1 # ! / usr / b in / env python
2 import s e r i a l
3 from pylab import ∗
4

5 com = None
6 run = Fa lse
7 TEMPLATE=1
8 DREG=0
9 usblen =32

10 r e g l e n g t h =512
11 temp= ’ ’
12

13 def readbs ( f i l e ) :
14 f =open ( f i l e , ’ r ’ )
15 s= f . read ( )
16 f . c l o s e ( )
17 return [ i n t ( b ) for b in s . s t r i p ( ) ]
18

19 def decimator ( bs ) :
20 OSR=8
21 return [sum( bs [ i : i +OSR ] ) for i in range ( 0 , len ( bs )−OSR, OSR) ]
22

23 def in i t com ( device = ’/dev/ttyACM0 ’ ) :
24 global com
25 com = s e r i a l . S e r i a l ( port=device , timeout = 0 . 1 )
26 com . open ( )
27 i f com . isOpen ( ) : print ”Connected to ” , device
28 usb send ( ’ r e g l e n g t h ’+ s t r ( r e g l e n g t h ) )
29

30 def usb send (command= ’ ’ , response= ’> ’ ) :
31 from time import s leep
32 global temp
33 s leep ( 0 . 1 )
34 com . wri te (command+ ’\n ’ )
35 out= ’ ’
36 out += com . read ( 1 )
37

38 while com . inWaiting ( ) :
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39 out += com . read ( 1 )
40

41 i f not out . endswith ( response ) :
42 print ”Unexpected response from uc : ”
43 print out
44 print ” Retrying once”
45 while com . inWaiting ( ) > 0 :
46 out += com . read ( 1 )
47 print ” ”
48

49 return out
50

51 def u s b c l e a r ( ) :
52 from time import s leep
53 out= ’ ’
54 out += com . read ( 1 )
55 s leep ( 0 . 1 )
56 while com . inWaiting ( ) :
57 out += com . read ( 1 )
58

59 def s e t t e m p l a t e ( data ) :
60 global run
61 run = Fa lse
62 r= usb send ( ’ tempsetup ’ )
63 i f r . f ind ( ’ Waiting f o r template data ’ ) <0:
64 print ’ Error s e t t i n g template r e g i s t e r : ’ , r
65 # r e t u r n 0
66 for i in range ( 0 , len ( data ) , usblen ) :
67 usb send ( ’ tempsetup ’+ s t r ( data [ i : i +min ( usblen , ( len ( data )− i ) ) ] ) [1 : −1] ) .

s p l i t ( ) [ :−1]
68

69 def s e t d r e g ( data ) :
70 global run
71 run = Fa lse
72 i f usb send ( ’ dregsetup ’ ) . f ind ( ’ Waiting f o r dreg data ’ ) <0:
73 print ’ Error s e t t i n g dreg r e g i s t e r ’
74 # r e t u r n 0
75 for i in range ( 0 , len ( data ) , usblen ) :
76 usb send ( ’ dregsetup ’+ s t r ( data [ i : i +min ( usblen , ( len ( data )− i ) ) ] ) [1 : −1] ) .

s p l i t ( ) [ :−1]
77

78 def run ( data ) :
79 global run
80 i f not run :
81 run=True
82 r=usb send ( ’ runsetup ’ )
83 i f r . f ind ( ’ Waiting f o r incoming data ’ ) <0:
84 print ’ Error s e t t i n g run mode : ’ , r
85 # r e t u r n 0
86 i f usb send ( ’ s p i o f f s e t 1 ’ ) . f ind ( ’ o f f s e t = ’ ) <0:
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87 print ’ Error s e t t i n g o f f s e t ’
88 r = [ ]
89 resp= ’ ’
90

91 for i in range ( 0 , len ( data ) , usblen ) :
92 resp+=usb send ( ’ x c o r r s p i s e n d ’+ s t r ( data [ i : i +min ( usblen , ( len ( data )− i ) )

] ) [1 : −1] )
93 print ”\ t \ t \ t%i perc ” %(100∗ i /len ( data ) )
94 resp=resp . r e p l a c e ( ’> ’ , ’ ’ )
95 resp=resp . s p l i t ( )
96 r . extend ( [ i n t ( x , 1 6 ) for x in resp ] )
97

98 return r
99

100 def cc ( x , t , reglength =512) :
101 global reg length , zeros , ones
102 zeros =[0]∗ r e g l e n g t h
103 ones =[1]∗ r e g l e n g t h
104 r e g l e n g t h=reglength
105

106 in i t com ( ”/dev/ttyACM0” )
107 usb send ( ’ r e g l e n g t h ’+ s t r ( r e g l e n g t h ) )
108 i f type ( x ) i s s t r :
109 incoming=readbs ( x ) [ : 1 5 0 0 0 ]
110 e lse :
111 incoming=x
112 i f type ( t ) i s s t r :
113 template=readbs ( t ) [ : reglength ]
114 e lse :
115 template= t [ : reglength ]
116

117 s e t t e m p l a t e ( template )
118 s e t d r e g ( incoming [ 0 : reglength ] )
119 h=run ( incoming [ reglength : ] , l i v e p l o t =0 , decimate =0)
120 return h
121

122

123

124 i f name == ’ main ’ :
125 t r y :
126 # CC be tween r e c o r d and QRS complex t e m p l a t e
127 r=cc ( ’ hear tdata/ s e l 1 0 0 . bs ’ , ’ hear tdata/N. bs ’ )
128 raw input ( ’ en ter to e x i t . . . ’ )
129 except e :
130 print ”ERROR” + e . value
131 except KeyboardInterrupt , e :
132 i o f f ( )
133 print e
134 raw input ( )
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E QT database wrapper script

The following script extracts ECG recordings from the QT database. The main() func-
tion shows an example on how to use the script. The script relies on the two programs,
rdsamp and rdann provided by the creators of the database.

1 # ! / usr / b in / env python
2

3 import commands , os
4 from pylab import ∗
5

6 qtdb= ’/ i f i /midgard/p15/bi t s t ream/olav/qt/qtdb/ ’
7

8 def getRecord ( record= ’ s e l 1 0 0 ’ , update=Fa l se ) :
9 ”””

10 Convert record to a l i s t
11 Saves the converted record as an a s c i i f i l e
12 Returns record as a l i s t
13 ”””
14 p=os . path . rea lpa th ( ’ . ’ )
15 os . chdir ( qtdb )
16 a s c i i =os . path . j o i n ( ’ a s c i i ’ , record+ ’ . dat . t x t ’ )
17 i f update or not os . path . i s f i l e ( a s c i i ) :
18 command=”rdsamp −r ” + record + ”>” + a s c i i
19 f a i l u r e , output = commands . g e t s t a t u s o u t p u t (command)
20 i f f a i l u r e :
21 print output
22 os . chdir ( p )
23 return −1
24 l i n e s = open ( a s c i i ) . r e a d l i n e s ( )
25 data = [ [ ] , [ ] , [ ] ]
26 for l i n e in l i n e s :
27 s= l i n e . s p l i t ( )
28 data [ 0 ] . append ( i n t ( s [ 0 ] ) )
29 data [ 1 ] . append ( i n t ( s [ 1 ] ) )
30 data [ 2 ] . append ( i n t ( s [ 2 ] ) )
31 os . chdir ( p )
32 return data
33

34 def getAnnotation ( record= ’ s e l 1 0 0 ’ , annotator= ’ q1c ’ , update=Fa l se ) :
35 ”””
36 E x t r a c t annotat ions to the belonging record
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37 Saves the converted annotat ion as an a s c i i f i l e
38 Returns l i s t of annotat ions
39 ”””
40 p=os . path . rea lpa t h ( ’ . ’ )
41 os . chdir ( qtdb )
42 a s c i i =os . path . j o i n ( ’ a s c i i ’ , record + ’ . ’ + annotator + ’ . t x t ’ )
43 i f update or not os . path . i s f i l e ( a s c i i ) :
44 command=”rdann −r ” + record +” −a ” + annotator + ”>” + a s c i i
45 f a i l u r e , output = commands . g e t s t a t u s o u t p u t (command)
46 i f f a i l u r e :
47 print output
48 os . chdir ( p )
49 return −1
50 l i n e s = open ( a s c i i ) . r e a d l i n e s ( )
51 data = [ [ ] , [ ] , [ ] ]
52 for l i n e in l i n e s :
53 s= l i n e . s p l i t ( )
54 data [ 0 ] . append ( i n t ( s [ 1 ] ) )
55 data [ 1 ] . append ( s t r ( s [ 2 ] ) )
56 data [ 2 ] . append ( i n t ( s [ 4 ] ) )
57 os . chdir ( p )
58 return data
59

60 def plotRecord ( record , annotators=None , a l s = ’−− ’ ) :
61 ”””
62 P l o t the record and the given anot a t ions
63 ”””
64 dmax=max( record [ 1 ] )
65 dmin=min ( record [ 1 ] )
66 t o f f s e t =20
67

68 ac o l or =[ ’ k ’ , ’ . 5 ’ , ’ c ’ , ’ r ’ , ’ y ’ , ’ g ’ , ’ k ’ , ’m’ , ’ 0 . 3 ’ , ’ 0 . 6 ’ , ’ 0 . 9 ’ ]
69

70 p l o t ( array ( record [ 0 ] ) /250 . , record [ 1 ] , a co lo r [ 0 ] )
71 x1=record [ 0 ] [ 0 ]
72 x2=record [0] [−1]
73 i f annotators :
74 for j in range ( len ( annotators ) ) :
75 for i in range ( len ( annotators [ j ] [ 0 ] ) ) :
76 i f annotators [ j ] [ 0 ] [ i ]>=x1 and annotators [ j ] [ 0 ] [ i ] <= x2 :
77 x=array ( annotators [ j ] [ 0 ] [ i ] ) /250.
78 p l o t ( [ x , x ] , [ dmin , dmax+( len ( annotators )− j ) ∗ t o f f s e t ] , a co lo r [ j +1] , l s =

a l s )
79 t e x t ( x , dmax+( len ( annotators )− j ) ∗ t o f f s e t , annotators [ j ] [ 1 ] [ i ] , c o l o r =

ac o l or [ j + 1 ] )
80 x l a b e l ( ’ Time ( s ) ’ )
81

82 def main ( ) :
83 record= ’ s e l 1 0 0 ’
84 data=getRecord ( record , update =0)
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85 an= ’ q1c ’
86

87 a=getAnnotation ( record , an )
88

89 plotRecord ( data , [ a ] )
90 show ( )
91

92 i f name == ’ main ’ :
93 main ( )
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