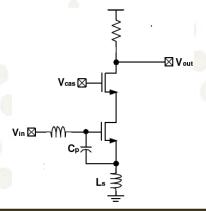
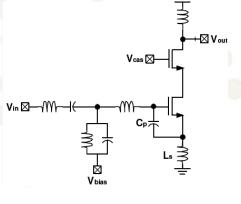


- The effect upon CMOS design due nanometer scaling
- Narrowband versus UWB
- Interesting UWB architectures

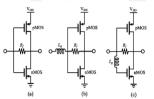
- The effect upon CMOS design due nanometer scaling
 - Higher speed and lower power consumption
 - Decreasing channel length → Lower supply voltage
 - Lower supply voltage → Fewer topologies

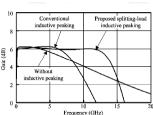


- The effect upon CMOS design due nanometer scaling
- Narrowband versus UWB
 - Typical narrowband design approach
 - Typical UWB design approach
- Interesting UWB architectures


- Typical narrowband design approach
 - Narrowband input matching network
 - Cascoded stage with resistive load

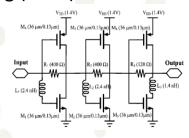
- Typical UWB design approach
 - Extended input matching filter
 - Inductor load compensates for drop in gain at higher frequencies.


- The effect upon CMOS design due nanometer scaling
- Narrowband versus UWB
- Interesting UWB architectures
 - Inverter architecture
 - Distributed architecture



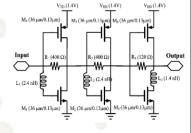
Towards 10GHz amplifier design in CMOS

- Inverter architecture
 - Simple&good amplifier
 - Relative large gain



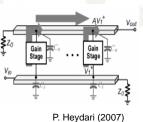
S-F. Chao, J-J Kuo, C-L. Lin, M-D- Tsai and H. Wang (2008)

- Splitting-Load Inductive Peaking Technique Chao, Kuo, Lin, Tsai and Wang (2008)
 - Gain: 13.2±1 dB form DC to 11.5GHz
 - -NF < 5.6dB

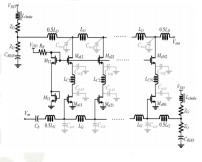

S-F. Chao, J-J Kuo, C-L. Lin, M-D- Tsai and H. Wang (2008)

Towards 10GHz amplifier design in CMOS

- Splitting-Load Inductive Peaking Technique Chao, Kuo, Lin, Tsai and Wang (2008)
- Possible improvements:
 - Adjustable gain
 - Lower the NF
 - Pseudo differential


S-F. Chao, J-J Kuo, C-L. Lin, M-D- Tsai and H. Wang (2008)

- Distributed amplifiers
 - Introduced in 1936 by William S. Percival
 - Amplifier cells connected together with TL → Greater GBW than a single cell



Towards 10GHz amplifier design in CMOS

- UWB Distributed LNA, Payam Heydari (2007)
 - Coupling inductor and parasitic capacitance create artificial TL
 - Gain: 8dB from 0.1GHz to 10.6GHz
 - NF: 2.9dB

P. Heydari (2007)

- UWB Distributed LNA, Payam Heydari (2007)
 - Coupling inductor and parasitic capacitance create artificial TL
- | Compared | Compared
- Possible improvements:
 - Adjustable gain
 - Different inter stage network

P. Heydari (2007)

- Summary:
 - Technology scaling introduces new design challenges in CMOS
 - The GBW required from UWB LNA's opens for new (and some old recycled) and novel design techniques.

• References:

- S-F. Chao, J-J Kuo, C-L. Lin, M-D-Tsai and H. Wang, "A DC-11.5 GHz Low-Power, Wideband Amplifier Using Splitting-Load Inductive Peaking Technique," in *IEEE Microwave and Wireless Components Letters*, Vol 18, NO 7, July 2008
- P. Heydari, "Design and Analysis of a Performance-Optimized CMOS UWB Distributed LNA," in *IEEE Journal of Solid-State Circuits*, Vol 42, No 9, September 2007
- S.B-T. Wang, Design of Ultra-Wideband RF Front-End, Berkeley: PhD dissertation, University Of California, Berkeley, 2005
- W. Sansen, Analog Design Essentials, Springer, 2006

